liked representation.

## COMPUTER ALGORITHMS AND DATA STRUCTURES

Time: Three hours Maximum: 100 marks

PART A —  $(6 \times 5 = 30 \text{ marks})$ 

Answer any SIX questions.

- 1. Write the general algorithm for divide and conquer.
- 2. What do you understand by time and space complexities?
- 3. Discuss briefly job sequencing with deadlines.
- 4. Apply the Greedy method to solve the Knapsack problem.
- 5. Explain the multistage graph problem.
- 6. What is 0/1 Knapsack problem? Explain.
- 7. What are queues? Write algorithm to insert and delete elements in a queue.

- 8. Write an algorithm to add two polynomials using liked representation.
- 9. Explain the binary tree travels with examples.
- 10. Differentiate between trees and binary trees.

PART B  $-(4 \times 10 = 40 \text{ marks})$ 

Answer any FOUR questions.

- 11. Write the algorithm to find minimum and maximum elements of the given set of numbers. Discuss its performance.
- 12. Explain the algorithm of selection sort with examples and analysis its time complexity.
- 13. Write an algorithm for single source shortest path problem using Greedy technique.
- 14. What is the travelling sales person problem? Explain.
- 15. Discuss the mazing problem with the algorithm to find a path in the maze.
- 16. Discuss the hashing functions.

PART C  $-(2 \times 15 = 30 \text{ marks})$ 

Answer any TWO questions.

- 17. Discuss the use of Greedy method in optimal storage on Tapes. Compute its efficiency in comparison with sequential storage.
- 18. What is divide and conquer method? Explain binary search algorithm using above method and find its complexities.
- 19. Discuss the evaluation of expression along with the algorithm for infix to postfix conversion.

3