(DM 01)

M.Sc. DEGREE EXAMINATION, MAY 2011.

First Year
Mathematics
Paper I - ALGEBRA
Time : Three hours Maximum : 100 marks

Answer any FIVE questions.
All questions carry equal marks.

1. State and prove Cauchy's theorem for Abelian groups.
2. Show that every group is isomorphic to a subgroup of $A(S)$ for some appropriate S.
3. If P is a prime number and $P / O(G)$, then show that G has an element of order P.
4. (a) State and prove unique factorization theorem.
(b) Show that a finite integral domain is a field.
5. (a) State and prove the Eienstein criterion.
(b) Show that $J[i]$ is a Euclidean ring.
6. If L is a finite extension of K and if K is finite extension of F, then show that L is a finite extension of F , moreover,
$[L: F]=[L: K][K: F]$
7. Show that the number e is transcendental.
8. If K is a finite extension of F, then show that $G(K, F)$ is a finite group and its order, $O(G(K, F))$ satisfies $O(G(K, F)) \leq[K: F]$.
9. (a) Define a Lattice. In a Lattice (L, \wedge, \vee) show that
(i) $\quad x \wedge x=x$ and $x \vee x=x$ for all $x \in L$.
(ii) $x \wedge y=y \wedge x$ and $x \vee y=y \vee x$ for all $x, y \in L$.
(iii) $\quad x \wedge(y \wedge z)=(x \wedge y) \wedge z$ and
(iv) $x \wedge(y \vee x)=x$ and $x \vee(y \wedge x)=x$ for all $x, y \in L$.
(b) Prove that every distributive lattice with more than one element can be represented as a subdirect union of two element chains.
10. (a) Derive the dimensionality equation $d(a \vee b)=d(a)+d(b)-d(a \wedge b)$ for modular lattices.
(b) Define a Boolean algebra and a Boolean ring. Show that a Boolean ring can be converted into a Boolean algebra.

(DM 02)

M.Sc. DEGREE EXAMINATION, MAY 2011.

First Year
Mathematics
Paper II — ANALYSIS
Time : Three hours
Maximum : 100 marks
Answer any FIVE questions.
All questions carry equal marks.

1. (a) Let $\left\{E_{n}\right\}, n=1,2,3 \ldots$. , be a sequence of countable sets, and put $S=\bigcup_{n=1}^{\infty} E_{n}$. Then prove that S is countable.
(b) Suppose $Y \subset X$. prove that a subset E of Y is open relative to Y if and only if $E=Y \cap G$ for some open subset G of X.
2. (a) Prove that every K-cell is compact.
(b) Let P be a nonempty perfect set in R^{K}. Then prove that P is uncountable..
3. (a) If Σa_{n} is a series of complex numbers which converges absolutely, then prove that every rearrangement of Σa_{n} converges, and then all converge to the same sum.
(b) Show that if $\Sigma a_{n}=\mathrm{A}$ and $\Sigma b_{n}=\mathrm{B}$, then $\Sigma\left(a_{n}+b_{n}\right)=A+B$ and $\Sigma c a_{n}=c A$, for any fixed C.
4. (a) Let f be a continuous mapping of a compact metric space X into a metric space Y. Then prove that f is uniformly continuous on X.
(b) Suppose f is a continuous mapping of a compact metric space X into a metric space Y. The prove that $f(x)$ is compact.
5. (a) If f is monotonic and α is continuous on $[a, b]$ then show that $f \in R(\alpha)$ on $[a, b]$.
(b) Show that a bounded function $f \in R(\alpha)$ on $[a, b]$ if and only if for each $\in>0$, there exists a partition p of $[a, b]$ such that $U(P, f, \alpha)-L(P, f, \alpha)<\epsilon$.
6. (a) State and prove the fundamental theorem of calculus.
(b) Suppose $f \in R(\alpha)$ on $[a, b], m \leq f \leq M, \phi$ is continuous on $[m, M]$, and $h(x)=\phi(f(x))$ on $[a, b]$. Then prove that $h \in R(\alpha)$ on $[a, b]$.
7. (a) State and prove the cauchy's criterion for uniform convergence of sequence of functions.
(b) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
8. State and prove the Weierstrass approximation theorem.
9. (a) State and prove Lebesque's monotone convergence theorem.
(b) Let f and g be measurable real-valued functions defined on X, let F be real and continuous on R^{2}, and put $h(x)=F(f(x), g(x)),(x \in X)$. Then show that h is measurable.
10. (a) State and prove the Riesz-fischer theorem.
(b) If $f \in L(\mu)$ on \in, then show that $|f| \in L(\mu)$ on \in, and $\left|\int_{\epsilon} f d \mu\right| \leq|f| d \mu$.

(DM 03)

M.Sc. DEGREE EXAMINATION, MAY 2011

First Year
Mathematics

Paper III - COMPLEX ANALYSIS AND SPECIAL FUNCTIONS AND PARTIAL DIFFERENTIAL EQUATIONS

Time : Three hours
Maximum : 100 marks
Answer any FIVE questions.
All questions carry equal marks.
choosing atleast TWO from each part.
PART A

1. (a) When n is a positive integer, then show that

$$
p_{n}(x)=\frac{1}{\pi} \int_{0}^{x}\left[x \pm \sqrt{x^{2}-1} \cos \theta\right]^{n} d \theta
$$

(b) Prove the generating function for $J_{n}(x)$ is $e^{\frac{1}{2} x\left(t-\frac{1}{t}\right)}=\sum_{n=-\infty}^{\infty} t^{n} J_{n}(x)$.
2. (a) Prove that $\int J_{3}(x) d x=c-J_{2}(x)-\frac{2}{x} J_{1}(x)$.
(b) Prove that $P_{n} Q_{n-1} Q_{n} P_{n-1}=\frac{1}{n}$.
3. (a) Derive the Rodrigue's formula.
(b) Express $f(x)=x^{4}+3 x^{3}-x^{2}+5 x-2$ interms of legendre polynomials.
4. (a) Prove that

$$
\left(1-x^{2}\right) p_{n}^{\prime}(x)=(n+1)\left[x p_{n}(x)-p_{n+1}(x)\right]
$$

(b) Solve

$$
\begin{array}{r}
\left(y^{2}+y z+z^{2}\right) d x+\left(z^{2}-z x+x^{2}\right) d y+ \\
\left(x^{2}+x y+y^{2}\right) d z=0 .
\end{array}
$$

5. (a) Solve $(r+s-6 t)=y \cos x$
(b) Solve $y^{2} r-2 y s+t=p+6 y$ by Monge's method.

PART B
6. (a) Express the following complex numbers in polar form
(i) $H i \sqrt{3}$
(ii) $-2 \sqrt{3}-2 i$.
(b) If $f(t)$ is an analytic function, prove that
$\left[\frac{\partial}{\partial x}|f(t)|\right]^{2}+\left[\frac{\partial}{\partial y}|f(t)|\right]^{2}=\left|f^{1}(t)\right|^{2}$.
7. (a) State and prove cauchy's theorem.
(b) Let r be a path. Then show that for $\alpha \notin\{r\}$, the function $\alpha \rightarrow \int_{r} \frac{d t}{t-d}$ is a continuous function of α.
8. (a) Give two different laurent expansions for $f(t)=\frac{1}{t^{2}(t-i)}$ around $\mathrm{t}=\mathrm{i}$. Examine the convergence of each series.
(b) Let f be analytic in Ω. Then show that f can be represented by a power series $f(t)=\sum_{n=0}^{\infty} a_{n}(t-a)^{n}$ about each point $a \in \Omega$.
9. (a) State and prove Residue theorem.
(b) Show that

$$
\int_{0}^{\pi / 2} \frac{d \theta}{\left(a+\sin ^{2} \theta\right)^{2}}=\frac{\pi(2 a+1)}{4\left(a^{2}+a\right)^{3 / 2}},(a>0)
$$

10. (a) Show that $\int_{0}^{\pi} \frac{d \theta}{3+2 \cos \theta}=\frac{\pi}{\sqrt{5}}$
(b) Evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{1+x^{2}} d x$.

(DM 04)

M.Sc. DEGREE EXAMINATION, MAY 2011.

First Year
Mathematics

Paper IV - THEORY OF ORDINARY DIFFERENTIAL EQUATIONS

Time : Three hours Maximum : 100 marks
Answer any FIVE questions.
All questions carry equal marks.

1. (a) Let x_{0} be in I, and let $\alpha_{1}, \alpha_{2}, . ., \alpha_{n}$ be any n constants. Prove that there is at most one solution ϕ of $L(Y)=0$ on I satisfying $\phi\left(x_{0}\right)=\alpha_{1}, \phi^{1}\left(x_{0}\right)=\alpha_{2}, \ldots, \phi^{(n-1)}\left(x_{0}\right)=\alpha_{n}$.
(b) Consider the equation :

$$
y^{\prime \prime}+\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=0, \text { for } x>0 .
$$

Find the two solutions ϕ_{1}, ϕ_{2} satisfying

$$
\phi_{1}(1)=1, \phi_{2}(1)=0, \phi_{1}^{\prime}(1)=0, \phi_{2}^{\prime}(1)=1 .
$$

2. (a) Let $\phi_{1}, \phi_{2}, . ., \phi_{n}$ be n solutions of $L(Y)=0$ on an interval I, and let x_{0} any point in I. Then prove that
$W\left(\phi_{1}, \phi_{2}, \mathrm{~L} \phi_{n}\right)(x)=\exp \left[-\int_{x_{0}}^{x} a_{1}(t) d t\right] W\left(\phi_{1}, \mathrm{~L} \phi_{n}\right)\left(x_{0}\right)$.
(b) Two solutions of $x^{2} y^{\prime \prime}-3 x y^{\prime}+3 y=0 \quad(x>0)$ are $\quad \phi_{1}(x)=x, \quad \phi_{2}(x)=x^{2} \quad$ use this information to find a third independent solution.
3. (a) Let M, N be two real-valued functions which have continuous first partial derivatives on some rectangle

$$
R:\left|x-x_{0}\right| \leq a,\left|y-y_{0}\right| \leq b
$$

Then show that the equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact in R if, and only if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$ in R.
(b) Compute the first four successive approximations $\phi_{0}, \phi_{1}, \phi_{2}, \phi_{3}$ of $y^{\prime}=1+x y$, $y(0)=1$.
4. (a) State and prove the existence theorem for a convergence of the successive approximation.
(b) Develop a method to solve $y^{\prime}=f(x, y)$ by variable separable.
5. (a) Find the solution ϕ of $y^{\prime \prime}=1+\left(y^{\prime}\right)^{2}$ which satisfies $\phi(0)=0, \phi^{\prime}(0)=0$.
(b) Find a solution ϕ of the system $y_{1}^{\prime}=y_{2}, \quad y_{2}^{\prime}=6 y_{1}+y_{2}, \quad$ satisfying $\phi(0)=(1,-1)$.
6. (a) Compute a solution of the system.

$$
\begin{aligned}
& y_{1}^{\prime}=3 y_{1}+4 y_{2} \\
& y_{2}^{\prime}=5 y_{1}+6 y_{2} .
\end{aligned}
$$

(b) Let $\omega_{1}, \omega_{2}, \ldots . . \omega_{n}$, be continuous complexvalued functions on an interval I containing a point x_{0}. If $\alpha_{1}, \alpha_{2} \ldots . \alpha_{n}$ are any n constants, prove that there exists one, and only one solution ϕ of the equation.
$y^{(n)}+a_{1}(x) y^{(n-1)}+\ldots \ldots+a_{n}(x) y=b(x)$ on $\quad \mathrm{I}$ satisfying.

$$
\phi\left(x_{0}\right)=\alpha_{1}, \phi^{1}\left(x_{0}\right)=\alpha_{2}, \ldots \ldots, \phi^{(n-1)}\left(x_{0}\right)=\alpha_{n} .
$$

7. (a) Find the general solution of the equation.

$$
y^{\prime}=\frac{y}{x^{3}}+x^{3} y^{2}-x^{8} .
$$

(b) Find the functions $z(x), k(x)$ and $m(x)$ such that
$z(x)\left[x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y\right]=\frac{d}{d x}\left[k(x) y^{\prime}+m(x) y\right]$.
8. (a) Show that if z, z_{1}, z_{2}, z_{3} are any four different solutions of the Riccati equation.
$z^{1}+a(x) z+b(x) z^{2}+c(x)=0$. Then show that
$\frac{z-z_{2}}{z-z_{1}}, \frac{z_{3}-z_{1}}{z_{3}-z_{2}}=$ constants.
(b) Show that the Green's function for
$L(x)=x^{\prime \prime}=0$
$x(0)+x(1)=0, x^{\prime}(0)+x^{\prime}(0)=0$ is
$G(t, s)= \begin{cases}1-s & , t \leq s \\ 1-t & , t \geq s .\end{cases}$
9. (a) State and prove sturm separation theorem.
(b) Put the differentical equation.
$y^{\prime \prime}+f(t) y^{\prime}+g(t) y=0$ into self - adjoint form.
10. (a) State and prove the Bocher osgood theorem.
(b) State and prove Liapunov's inequality.

