Derive an expression for effectiveness of a parallel flov of heat exchanger in terms of NTU and C. a).

Х

An oil cooler for a lubrication system has to cool $1000 \text{ kg/hr. of oil (Cp} = 2.09 \text{ KJ/KgK) from } 80^{\circ}\text{C to } 40^{\circ}\text{C}$ by using a cooling water flow of 1000 kg/hr at 30°C. Give your choice for parallel flow or counter flow heat exchanger with reasons. Calculate surface area of heat exchanger if $U = 24 \text{ w/m}^2 ^{\circ}\text{C}$.

ATS-C025(D) ME

(10)

B. Tech. Degree III Semester Examination January 2002

ME 303 THERMAL ENGINEERING I

Time: 3 Hours	Max. Marks (Answer all questions)	: 100			
l a)	Explain the causes of entropy increase in a closed system. Prove that an isentropic process need not be adiabatic or reversible.				
b)	A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 300°C. What is the least rate of heat rejection per kw net output of the engine?				
c)	Explain the concept of available and non-available energy. Is the availability function same for non-flow and flow process? Explain.	(5)			
	OR				
li a)	In a petrol engine the dry exhaust analysis gave 1.5% CO and negligible O_2 . The fuel used was 84% carbon and 16% hydrogen on mass basis. Find the air fuel ratio.	(7)			
b)	A gasoline engine delivers 150kw. The fuel used is C ₈ H ₁₈ (liquid) and it enters the engine at 25°C. 150% theoretical air is used and it enters at 45°C. The products of combustion leave the engine at 750K and the heat transfer from the engine is 205kw. Determine the fuel consumption per hour if complete combustion is achieved.	(13)			
III a)	Explain the combustion stages of CI engines.	(5)			

(P.T.O)

П	b)	The pressure and temperature at the beginning of the compression stroke in ideal diesel cycle are 1 bar and 27°C.		VI	a)	Compare rotary and reciprocating compressors.	(5)
		The maximum pressure in the cycle is limited to 48.5 bar.			b)	Air at a temperature of 17°C flows into the centrifugal	
		The pressure is 15 bar when the piston is moved 25% of			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	compressor running at 20,000 rpm, using the following	
		the stroke volume during expansion stroke.				data	٠.
		Determine (i) compression ratio of the cycle	•			(i) slip factor = 0.8	
		(ii) maximum temperature in the cycle (iii) air standard			*	(ii) work input factor = 1	
4		efficiency (iv) percentage stroke at which cut-off occurs. (10)		1	(iii) isentropic efficiency = 70%	
,	V	officiency (iv) percentage stroke at which cut-off occurs. (10)			(iv) outer diameter of blade $+$ ip $= 50$ cm	
	c)	Explain about heat balance test in IC engines.	(5)			Assuming absolute velocities of air entering and leaving	
	٠,	OR	(3)			compressor are same,	
v :	a)	What is meant by ignition delay? Describe two components				Find i) Temperature rise of air passing through	
	,		(5)			compressors.	
						ii) Static pressure ratio.	(15)
	b)	Explain about Morse test.	(5)			• • • • • • • • • • • • • • • • • • • •	, ,
			(4)	VII		Derive an expression for general heat conduction equation	ı
	c)	A perfect gas at 1 bar and 290k undergoes ideal diesel cycle.		•		in cartesian coordinates. Deduce an expression for	
	,	The maximum pressure of the cycle is 50 bar. The volume				temperature distribution.	(20)
	•	at the beginning of compression is 1m3 and after constant	-			•	
		pressure heating is 0.1 m ³ . Determine the temperature at all				OR	
		salient points of the cycle and also find out cycle efficiency.				·	
			10)	VIII	a)	State and prove Kirchoffs law of radiation.	(5)
7	a)	What are the advantages of multi stage compression over a			b)	Two concentric spheres 210 mm and 300mm diameter with	
		single stage compression for same pressure ratio? Why				space between them evacuated are to be used to store	
		inter cooling is necessary in multi stage compression?	(7)			liquid air (-153°C) in a room at 27°C. The surfaces of the	
						spheres are flushed with aluminium (emmissivity = 0.03)	
	b)	A three stage compressor is used to compress H ₂ from				and latent heat of vapourisation of liquid air is 209 KJ/Kg.	
		1.04 bar to 35 bar. The compression in all stages follows				Calculate the rate of evaporation of liquid air.	(15)
		the law $PV^{1.25}$ = constant. The temperature of air at the					
		inlet of compressor is 288k. Neglecting clearance and		IX	a)	Explain about boundary layers.	(8)
		assuming perfect inter cooling find out indicative power					
		required in kw to deliver 14m ³ of H ₂ per minute required			b)	Calculate the heat transfer from a 60W incandesent bulb	
	-	at inelt conditions and intermediate pressures.				at 115°C to ambient air at 25°C. Assume the bulb as a	
		Take $R = 4.12 \text{ KJ/KgK}$,	13)			sphere of 50mm diameter. Also find the percentage of	
						power lost in free convection.	(12)
		OR OR				OD	
	•					OR	

21