4

IX.	(a)	convection.	(8)
	(b)	Define effectiveness of a heat exchanger.	(4)
	(c)	Derive the effectiveness - NTU relationship for a parallel flow heat exchanger.	(8)
		OR	
X.	(a)	Define:	
		(i) Reynold's number	

(ii)

(iii)

(b) Air enters a cooler at 115°C and at 3 bar and is brought to 45°C by passing through tubes of 10mm inner diameter surrounded by water which enters the cooler at 15°C and leaves at 30°C. Assuming the heat exchanger is counter flow, find the mean temperature difference. If the air velocity in the tube is limited to 6.5m/sec. find the length of the tube required. Neglect the tube resistance and assume water side heat transfer coefficient as 200W/m²-K

Prandtl number

Nusselt number

(6)

Take the following properties of air at mean temperatures:

Density, $\rho = 2.87 \text{ Kg/m}^3$ Specific heat, $C_p = 1005 \text{ J/Kg-K}$ Thermal conductivity, K = 0.03 W/m-KKinematic viscosity, $v = 20.92 \times 10^{-6} \text{ m}^2 \text{ / sec}$ Absolute viscosity, $\mu = 20.92 \times 10^{-6} \text{ Kg/m-s}$ (14)

BTS 165 (I)

B.TECH. DEGREE III SEMESTER (SUPPLEMENTARY)
EXAMINATION IN MECHANICAL ENGINEERING (CADICAL
JUNE 2002

ME 304 THERMODYNAMICS AND HEAT TRANSFER

		(1995 Admissions)		
Time:	3 Hours	ME Maxim	num Marks: 10	00
I.	(a)	Explain the following:		
		(i) Thermodynamic system		
		(ii) Thermodnyamic Equilibr	i um	
		(iii) Zeroth law of thermodyna	umics	
		(iv) Joule-Thomson effect.	(1:	2)
	(b)	An engine cylinder has a piston of area 0.12 contains gas at a pressure of 1.5MPa. The gaccording to a process which is represented line on a pressure-volume diagram. The fin 0.15MPa. Calculate the work done by the gas	gas expands by a straight al pressure is as on the	
		piston if the stroke is 0.3m. OR	(1	8)
11.	(a)	Derive the steady flow energy equation. Ho	w this	
		equation is applicable to turbine and comp	ressor? (16	0)
	(b)	State and prove Carnot's theorem.	(10))
Ш.	(a)	Derive the Tds equations.	(10))
	(b) ·	Explain the Rankine cycle showing it on P - T - S diagrams. Obtain an expression for eff		٠
		of the cycle.	(10))

OR

		2					3		
IV. (a) (b)		Explain the Diesel cycle and obtain an expression for the air standard efficiency of the cycle. The following information is available about an engine working on Diesel cycle: Maximum cycle temperature = 1890 K Heat supplied = 860 KJ/Kg	0)	(b)			Determine the loss of heat through the wall of a rotating sphere shaped boiling pan with an inner diameter of 1.5m and wall thickness 20cm. Inner surface temperature is 200°C and that of the outer surface is 50°C. The equivalent thermal conductivity is 0.12W/m-K. Also find the heat flux. (8)		
		Ambient conditions = 1 bar, 300 K							
		Determine the compression ratio, cut off ratio, maximum pressure and air standard efficiency. (10	D)	VII.	(a)	State and prov	e Kirchoff's law of radiation.	(6)	
		•	,		(b)	Explain:			
			•			(i) (ii)	Black body Stefan Boltzmann law.	(6)	
V.	(a)	Obtain the Fourier conduction equation in polar co-	2)	•	(a)	Dotoi the	hoot last by adiation was a seem law of	1 C	
(ordinates. (10	J)		(c)		heat lost by radiation per metre lengt pipe at 300°C if -	n oi	
	(b)	A furnace wall is made up of three layers, one of fire				415			
		brick, one of insulating brick and one of red brick. The inner and outer surfaces are at 870°C and 40°C respectively		•		(i)	located in a large room with red b	rick	
		The respective co-efficients of thermal conductivities	·-			(ii)	walls at a temperature of 27°C. enclosed in a 16cm diameter red by	wick	
		of the layers are 1, 0.12 and 0.75 W/m-K and the thickness are 22cm, 7.5cm and 11cm. Assuming close bonding of				(11)	conduit at a temperature of 27°C.	ЛІСК	
		the layers at their interfaces, find the rate of heat loss				Emissivity of s	steel pipe = 0.79		
		per square metre per hour and the interface temperatures. (10 OR))				orick conduit = 0.93	(8)	
VI.	(a)	A conical cylinder of length L and radii R ₁ and R ₂	•	VIII.	(a)	Explain:			
		$(R_1 < R_2)$ is fully insulated along the outer surface.				(i)	Emissive power		
		The surface of R_1 is maintained at temperature T_1 and				(ii)	Planck's law		
						(iii) (iv)	Grey body Emissivity	(12)	
		surface R_2 is maintained at temperature T_2 $(T_1 > T_2)$.				(14)	Limissivity	(12)	
		Considering the heat flow along the axis of the cylinder find the expression for heat flow through the conical			(b)	Estimate the ne	et radiant interchange per square metr	е	
		cylinder. Take the thermal conductivity as K. (12))			for two very las	rge planes at temperatures 500°C and		
		- January Min Mariner additional and 12	·				vely. Assume that the emissivity of h		
			•			and cold planes	are 0.8 and 0.6 respectively.	(8)	

Contd.....3.

Contd.....4.