Subject: ENGINEERING MATHEMATICS - II

Time: 3 Hours

DECEMBER 2011

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. The value of the limit $\operatorname{lt}_{x \rightarrow 0}\left(\frac{2^{x}-1}{(1+x)^{1 / 2}-1}\right)$ is equal to
(A) $2 \log 2$
(B) $\log 2$
(C) 0
(D) 1
b. The value of definite integral $\int_{0}^{\pi} \theta \sin ^{3} \theta \cos \theta d \theta$ is equal to
(A) $\frac{3 \pi}{32}$
(B) $-\frac{3 \pi}{32}$
(C) $\frac{\pi}{32}$
(D) $\frac{-\pi}{32}$
c. The solution of $x d y-y d x=\sqrt{x^{2}+y^{2}} d x$ is
(A) $y-\sqrt{x^{2}+y^{2}}=c x^{2}$
(B) $x-y^{2} e^{-y}=c y^{2}$
(C) $y+\sqrt{x^{2}+y^{2}}=c x^{2}$
(D) None of these.
d. z is a complex number with $|z|=1, \arg (z)=3 \pi / 4$ the value of z is
(A) $(1+i) / \sqrt{2}$
(B) $(-1+i) / \sqrt{2}$
(C) $(1-i) / \sqrt{2}$
(D) $(-1-i) / \sqrt{2}$
e. How many seconds a clock would lose per day if the length of its pendulum were increased in the ratio $900: 901$
(A) 48
(B) 45
(C) 40
(D) 44
f. Laplace transform of $\mathrm{te}^{\mathrm{at}} \sin (\mathrm{at}), \mathrm{t}>0$ is
(A) $\frac{(s-a)}{(s-a)^{2}+a^{2}}$
(B) $\frac{a(s-a)}{(s-a)^{2}+a^{2}}$
(C) $\frac{2 a(s-a)}{\left[(s-a)^{2}+a^{2}\right]^{2}}$
(D) $\frac{(s-a)^{2}}{(s-a)^{2}+a^{2}}$
g. $\quad L^{-1}\left(\tan ^{-1} \frac{1}{s}\right)$ is
(A) $\frac{\cos t}{t}$
(B) $\frac{\sin t}{t}$
(C) $1+\cos t$
(D) $1-\cos t$
h. If $f(x)=\cos x,(-\pi, \pi)$ then the value of b_{n} is
(A) $-\pi$
(B) 0
(C) π
(D) 2π
i. The volume of the parallelopiped whose three coterminus edges are given by $\bar{a}=-\hat{i}+\hat{j}+3 \hat{k}, \bar{b}=-\hat{i}+2 \hat{j}-3 \hat{k}, \bar{c}=\hat{i}-2 \hat{j}-\hat{k}$ is
(A) 2
(B) 4
(C) -2
(D) -4
j. If the admittance and current of a circuit are given by the complex numbers $7+i, 1-i$ respectively, then the voltage of the circuit is
(A) $\frac{4}{25}+i \frac{4}{25}$
(B) $-\frac{4}{25}-i \frac{4}{25}$
(C) $\frac{4}{25}-i \frac{4}{25}$
(D) $-\frac{4}{25}+i \frac{4}{25}$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Evaluate $\operatorname{lt}_{x \rightarrow 0} \frac{e^{x}-e^{\sin x}}{x-\sin x}$
b. If $\mathrm{f}(\mathrm{x})$ is twice differentiable such that $f^{\prime \prime}(x)=-f(x)$ and $f^{\prime}(x)=g(x)$, $h(x)=[f(x)]^{2}+[g(x)]^{2}$, then find the value of $h(10)$ if $h(5)=11$.
Q. 3 a. Find the volume of the solid generated by the revolution of the area of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ about x-axis.
b. If $U_{n}=\int_{0}^{\pi / 2} x\left(\sin ^{n} x\right) d x(n>1)$ then prove that $U_{n}=\frac{n-1}{n} U_{n-2}+\frac{1}{n^{2}}$.

Deduce that $\mathrm{U}_{5}=\frac{149}{225}$
Q. 4 a. Separate $\tan ^{-1}(a+i b)$ into real and imaginary parts.
b. If n is a positive integer, prove that $(\sqrt{3}+\mathrm{i})^{\mathrm{n}}+(\sqrt{3}-\mathrm{i})^{\mathrm{n}}=2^{\mathrm{n}+1}$ where $\mathrm{i}=\sqrt{-1}$
Q. 5 a. Find the moment about a line through the origin having direction of $2 \hat{i}+2 \hat{j}+\hat{k}$ due to a 30 kg force acting at a point $(-4,2,5)$ in the direction of $12 \hat{i}-4 \hat{j}-3 \hat{k}$.
b. If $|\vec{A}+\vec{B}|=60,|\vec{A}-\vec{B}|=40,|\vec{B}|=46$, find $|\vec{A}|$
Q. 6 a. Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$, if $x(0)=1, x(\pi / 2)=-1$
b. Solve $x \sin x \frac{d y}{d x}+(x \cos x+\sin x) y=\sin x$
Q. 7 a. Find the Fourier series of the function $f(x)=\left\{\begin{array}{cc}0, & -2<x<-1 \\ 1+x, & -1<x<0 \\ 1-x, & 0<x<1 \\ 0, & 1<x<2\end{array}\right.$
b. Given that $f(x)=x+x^{2}$ for $-\pi<x<\pi$ find the Fourier expansion of $\mathrm{f}(\mathrm{x})$.

Deduce that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots$.
Q. 8 a. Find the Laplace transform of $\frac{1-\cos t}{t^{2}}$
b. Find the Laplace transform of the function $f(t)=\left\{\begin{array}{cl}\sin w t & \text { for } 0<t<\frac{\pi}{w} \\ 0 & \text { for } \frac{\pi}{w}<t<\frac{2 \pi}{w}\end{array}\right.$ (8)
Q. 9 a. Evaluate $L^{-1}\left(\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right)$
b. Find $L^{-1}\left[\frac{3 s-8}{s^{2}-4 s+20}\right]$

