Con. 3249-08.

3015/08

5

20

4

4

12

20

CO-3352

(3 Hours)

[Total Marks: 100

N.B.: (1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of remaining six questions.
- (3) Assume suitable data wherever required.
- (4) Figures to the right indicate full marks.

1. Attempt any four :-

- (a) Describe the design specifications for

 (i) Transient Response
 (ii) Frequency Response.

 (b) Write short notes on transient response design via gain adjustment.
 5
 (c) Describe advantages of state space design techniques over classical design techniques.
 (d) Derive transfer function from state space equation for single input single

 5
- output system.

 (e) Write short notes on :
- (i) Systematic effects (ii)
- (ii) Asynchronous sampling.
- 2. Given a unity feedback system with

$$G(s) = \frac{k(s+8)}{(s+3)(s+6)(s+10)}$$

Design a PID controller so that system can operate with a peak time that is two-thirds that of the uncompensated system at 20% overshoot and with zero steady-state error for a step input. Use Root Locus Method.

3. A unity feedback system with forward transfer function

$$G(s) = \frac{k}{s(s+7)}$$

is operating with a closed-loop step response that has 20% overhoot. Do the following :

- (a) Evaluate the settling time
- (b) Evaluate the steady-state error for a unit ramp input.
- (c) Design a lag-lead compensator to decrease the settling time by 2 times and decrease the steady-state error for a unit ramp input by 10 times. Place the lead zero at -3. Use Root Locus Method.
- 4. For the system given below :

Use, Bode diagrams to design a lag compensator to yield a ten fold improvement in steady state error over the gain compensated system while keeping the percent overhoot at 9.5%.

Con. 3249-CO-3352-08.

Design a state variable feedback controller to yield a 20-8% overshoot and a settling 20 time of 4 seconds for a plant

$$G(s) = \frac{(s+4)}{(s+1)(s+2)(s+5)}$$

that is represented in cascade form as shown in figure.

6. For a given system,

$$G(s) = \frac{407 (s + 0.916)}{(s + 1.27) (s + 2.69)}$$

Design an observer for the phase variables with a transient response described by damping ratio = 0.7 and $w_n = 100$.

- Write short notes on any two :-
 - (a) A/D and D/A converters
 - (b) Tracking effectiveness
 - (c) Estimator Design.

20

20