JUNE 2009

AMIETE - ET (OLD SCHEME)

Code: AE09

Subject: ANALOG & DIGITAL ELECTRONICS

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following: (2×10)

a. CMRR is defined as

(A)
$$\frac{20 \log \frac{|A_d|}{|A_c|}}{|A_c|}$$
 (B) $\frac{20 \log \frac{|A_c|}{|A_d|}}{|A_d|}$ (C) $\frac{10 \log \frac{|A_d|}{|A_d|}}{|A_c|}$ (D) $\frac{10 \log \frac{|A_c|}{|A_d|}}{|A_d|}$

- b. An Op-amp has
 - (A) High input impedance and high output impedance.
 - **(B)** High input impedance and low output impedance.
 - (C) Low input impedance and high output impedance.
 - **(D)** Low input impedance and low output impedance.
- c. The magnitude function of an N^{th} order Butterworth filter with a passband edge is given by

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^N}} \qquad |H(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega_p}{\omega}\right)^N}}.$$
(A)

$$|H(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega_p}{\omega}\right)^{2N}}} \qquad |H(j\omega)| = \frac{1}{\sqrt{1 + \varepsilon^2 \left(\frac{\omega}{\omega_p}\right)^{2N}}}$$
(C)

- d. The Q-factor for parallel LCR resonator is

 - (B) $Q = \frac{\omega_o}{CR}.$ (D) $Q = \frac{\omega_o}{LC}.$ (A) $Q = \omega_0 CR$. (C) $Q = \omega_0 LC$.
- e. In Schottky barrier diode, junction is formed by
 - (A) metal-extrinsic semiconductor.
 - (B) metal-intrinsic semiconductor.
 - (C) Two dissimilar metals.
 - (**D**) Extrinsic and intrinsic semiconductor.
- A CMOS logic gate consist of
 - (A) NMOS and PMOS transistors.
 - **(B)** Two NMOS or two PMOS transistors.
 - (C) n-p-n and p-n-p transistors.
 - **(D)** Two n-p-n or p-n-p transistors.
- _____ used for impedance matching.
 - (A) Inverting amplifier
 - **(B)** Non-inverting amplifier
 - (C) Voltage follower
 - (D) Logarithmic amplifier
- h. Major limitation of FET over BJT is
 - (A) Higher input impedance.
 - **(B)** Lower gain-bandwidth product.
 - (C) Higher effect of diffusion capacitance.
 - **(D)** Higher effect of depletion capacitance.
- NMOS is preferred over PMOS because
 - (A) Electron diffuses faster than holes.
 - **(B)** Mobility of electron is higher than hole.
 - (C) Easy to fabricate.

- b. How do you ensure that faster switching operation being made using Schottky diode in transistor circuit? (2)
- c. Explain the switching characteristics of diode using suitable diagram.(10)
- Q.8 a. Explain: Noise margin, Propagation delay, Power dissipation, Delay-power product, Fan-in and Fan-out.
 (10)
 - b. Explain the operation of the NMOS transistor as a switch in the implementation of pass-transistor logic circuit. (6)
- Q.9 a. Explain the operation of basic TTL NAND gate. (8)
 - b. Compare static RAM with dynamic RAM. (8)