Code: A-09/C-03/T-03

Subject: ANALOG & DIGITAL ELECTRONICS

Time: 3 Hours Max. Marks: 100

NOTE: There are 11 Questions in all.

- Question 1 is compulsory and carries 16 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Answer any THREE Questions each from Part I and Part II. Each of these questions carries 14 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following: (2x8)

- a. For the circuit shown in Fig.1, the input resistance $^{\mathbf{R}_{id}}$ will be
 - (A) $2R_1$.

(B) $2R_1 + R_2$.

(C) $2(R_1 + R_2)$.

(D) Infinity.

- b. A second order filter has its poles at $s = -\frac{1}{2} \pm j \frac{\sqrt{3}}{2}$. The transmission is zero at $\omega = \frac{2 \operatorname{rad}}{s}$ and is unity at $\omega = 0$. The transfer function of the filter is
 - (A) $\frac{1}{4} \frac{\left(s^2 + s\right)}{\left(s^2 s + 1\right)}$

- $(B) \frac{1}{4} \frac{\left(s^2 + s\right)}{\left(s^2 + s + 1\right)}$
- (C) $\frac{1}{4} \left(s^2 + s + 0.25 \right)$
- (D) $\frac{1}{4} \left(s^2 s 1 \right)$

$$T(s) = \frac{a_1 s}{s^2 + \frac{\omega_0}{Q} s + \omega_0^2}$$

c. Transfer function of a filter is given by _____filter.

. It represents a

(A) Low pass.

(B) High pass.

(C) Band pass.

- (D) Band stop.
- d. The circuit shown below in Fig.2

represents _____ filter.

(A) Low pass.

(B) High pass.

(C) Band pass.

(**D**) All pass.

- e. The circuit shown in Fig.3 below represents _____ gate
 - **(A)** AND.
 - (B) NAND.
 - **(C)** OR.
 - (D) NOR.
- f. Active loaded MOS differential circuit has a
 - (A) high CMRR.

(B) low CMRR.

(C) high delay.

- (**D**) high differential gain.
- g. NPN transistor is not suitable for good analog switch because
 - (A) $I_{C} V_{CE}$ characteristic curve pass directly through origin.
 - **(B)** the device has very high input impedance.
 - (C) the device is asymmetrical with an offset voltage V_{CE} off.
 - (**D**) it has well defined transition frequency \mathbf{f}_{T} .
- h. CMOS logic has the property of
 - (A) increased capacitance and delay.(B) decreased area.
 - (C) high noise margin.
- (**D**) low static power dissipation.

PART I

Answer any THREE Questions. Each question carries 14 marks.

- Q.2 a. Explain Miller Integrator. What are the effects of the OP-AMP input offset voltage, input bias and offset currents on the performance of Miller Integrator. (7)
 - b. Consider a symmetrical square wave of 20V peak to peak, zero average and 2ms period applied to a Miller integrator. Find the value of the time constant (CR) such that the triangular waveforms at the output has 20V peak to peak amplitude. (7)
- Q.3 a. Draw the circuit diagram of two stage CMOS op-amp configuration. What do you understand by systematic output dc offset voltage? How can it be eliminated? (8)
 - b. Draw the circuit diagram of a CMOS inverter and explain its operation.

 (6)
- Q.4 The transfer function of a two port network is given by $T(s) = \frac{z_2}{z_1 + z_2}$ where z_1 and z_2 represent any impedances. Explain how the following passive filters can be realized from this network.
 - (i) Bandpass filter. (4)
 - (ii) Notch filter. (5)
 - (iii) All pass filter. (5)
- Q.5 a. With proper diagram explain the operation of dual slope A/D converter and charge redistribution A/D converter. Compare their advantages and disadvantages.
 (10)
 - b. Explain the operation of sample & hold circuit. Discuss its applications.(4)
- **Q.6** a. What types of doping should be used in a switching diode. What is reverse recovery time? **(4)**
 - b. Explain the operation of a MOSFET analog switch with suitable circuit diagram. (6)
 - c. What property of Schottky diode make it suitable for fast switching? Explain . (4)

PART II

Answer any THREE Questions. Each question carries 14 marks.

Q.7 Implement the following Boolean expressions by synthesizing Pull up and Pull down networks:

		(i) $Y = \overline{AB}$. (ii) $Y = \overline{A(B + CD)}$. (iii) $Y = A\overline{B} + \overline{AB}$.	(4) (5) (5)
Q.8	a.	Explain the following logic families and compare their performances. (9)	
		(i) ECL. (ii) TTL	
	b.	How ECL and TTL logic families are interfaced with each other. (5)	
Q.9	a.	With a suitable circuit diagram explain how a four bit binary full adder we how this 4-bit adder can be used as substracter. (8)	works.
	b.	Explain the operation of a BCD to decimal decoder. (6)	
Q.10		Explain the following with timing diag	ram.
		(i) JK flip-flop.(ii) Clocked SR flip-flop.	(7) (7)
Q.11		Write short notes on any TWO following:	of the
		 (i) Programmable logic Array. (ii) RAM & PROM. (iii) Seven segment display system. (iv) Shift register. 	7+7)