Total No. of Questions-12]
[Total No. of Printed Pages-8+2
[3862]-200
S.E. (Chem./Petrole./Polymer/Biotech./Printing)
(First Semester) EXAMINATION, 2010
ENGINEERING MATHEMATICS-III
(2008 COURSE)
Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answer three questions from Section I and three questions from Section II.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of logarithmic tables, slide rule, electronic pocket calculator is allowed.
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) Solve the following (any three) :
(1) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=e^{-x} \sec ^{3} x$

$$
\begin{equation*}
\left(\mathrm{D}^{2}-4 \mathrm{D}+4\right) y=e^{2 x}+x^{3}+\cos 2 x \tag{2}
\end{equation*}
$$

(3) $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x=0$
(4) $\frac{d^{2} y}{d x^{2}}+y=\sec x \tan x$ (method of variation of parameters)

$$
\begin{equation*}
\left(\mathrm{D}^{2}-1\right) y=x \sin x+\left(1+x^{2}\right) e^{x} \tag{5}
\end{equation*}
$$

(b) Solve :

$$
\begin{aligned}
& 2 \frac{d x}{d t}-x+3 y=\sin t \\
& 2 \frac{d y}{d t}+3 x-y=\cos t
\end{aligned}
$$

and obtain x and y if $x=1 / 4$ and $y=-1 / 20$ at $t=0$. [5]

Or

2. (a) Solve the following (any three) :
(1) $(1+x)^{2} \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}+y=2 \sin$ élog $(1+x) \dot{\text { ¢̀ }}$
(2) $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=e^{e^{x}}$ (method of variation of parameters)
(3) $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=e^{-2 x} \sin 2 x+4 x^{2} e^{x}$

(5) $\frac{d^{2} y}{d x^{2}}-y=\cosh x \cos x$.
(b) Solve :

$$
\begin{equation*}
\frac{d x}{z(x+y)}=\frac{d y}{z(x-y)}=\frac{d z}{x^{2}+y^{2}} . \tag{5}
\end{equation*}
$$

3. (a) The D.E. satisfied by a beam uniformly loaded with one end fixed and second subjected to a tensile force P is given by :

$$
\mathrm{EI} \frac{d^{2} y}{d x^{2}}-\mathrm{P} y=-\frac{\mathrm{W}}{2} x^{2}
$$

Show that the elastic curve for the beam under conditions $y=0, \quad \frac{d y}{d x}=0$ when $x=0$ is given by :

$$
y=\frac{\mathrm{W}}{2 \mathrm{P}} \frac{\text { ée }}{\hat{\mathrm{e}}} \mathrm{e}^{2}-\frac{2}{n^{2}}-\frac{e^{n x}}{n^{2}}-\frac{e^{-n x}}{n^{2} \text { ù }} \dot{\mathrm{u}}
$$

where $\mathrm{EI}=\frac{\mathrm{P}}{n^{2}}$.
(b) Solve :

$$
\frac{\boldsymbol{\Omega} v}{\boldsymbol{q} t}=k \frac{\boldsymbol{\Psi}^{2} v}{\boldsymbol{\Pi} x^{2}} \text { if }
$$

(i) $v^{1} ¥$ as $t ® ¥$

(iii) $v(l, t)=0 \quad " t$
(iv) $v(x, 0)=v_{0}$ for $0<x<l$.

Or

4. (a) In a certain chemical reaction, the temperature u and v satisfy the equations :

$$
\begin{aligned}
& \frac{d u}{d x}+v=\sin x \\
& \frac{d v}{d x}+u=\cos x
\end{aligned}
$$

given that when $x=0$, then $u=1$ and $v=0$. Find the values of u and v.
(b) An infinitely long plane uniform plate is bounded by two parallel edges in the y-direction and an end at right angles to them. The breadth of plate is p. This end is maintained at temperature u_{0} at all points and other edge at zero temperature. Find the steady state temperature function $u(x, y)$.
5. (a) Use Fourier transform to solve :

$$
\frac{\llbracket u}{\llbracket t}=\frac{\mathbb{q}^{2} u}{\llbracket x^{2}} \quad 0<x<¥, t>0
$$

where $u(x, t)$ satisfies the conditions :

(ii) $u(x, 0)=\begin{array}{cc}x & 0<x<1 \\ 10 & x>1\end{array}$
(iii) $|u(x, t)|<M$.
(b) Solve the integral equation :
(c) Find the Fourier sine and cosine transforms of the following function :
Or
6. (a) Find the Fourier sine transform of $\frac{e^{-a x}}{x}$ and hence evaluate :
(b) Using the Fourier integral representation show that :
(c) Using inverse Fourier sine transform, find $f(x)$ if :

$$
\begin{equation*}
\mathrm{F}_{s}(1)=\frac{1}{1+1^{2}} . \tag{5}
\end{equation*}
$$

SECTION II

7. (a) Find Laplace transform (any three) :
(i) $e^{4 t} \underset{0}{t} \frac{1-\cos 2 t}{t} d t$
(ii) $\frac{\cos \sqrt{t}}{\sqrt{t}}$
(iii) $f(t)=\cos \frac{1}{3}(2 \mathrm{p}-3 t) \quad t>\frac{2 \mathrm{p}}{3}$

$$
=0, \quad 0<t<\frac{2 \mathrm{p}}{3}
$$

(iv) $f(t)=\sin \mathrm{w} t, \quad 0<t<\frac{\mathrm{p}}{\mathrm{w}}$

$$
=0, \frac{\mathrm{p}}{\mathrm{w}}<t<\frac{2 \mathrm{p}}{\mathrm{w}},
$$

Given $f(t)=f_{\mathbb{C}}^{\mathfrak{x}} t+\frac{2 \mathrm{p}}{\mathrm{w}} \stackrel{\ddot{\dot{\phi}}}{\dot{\ddot{D}}}$.
(b) Find Laplace transform of $\operatorname{erf}(\sqrt{t})$ and hence evaluate :
Or
8. (a) Find inverse Laplace transform (any three) :
(i) $\frac{5 s+3}{(s+1)\left(s^{2}+2 s+5\right)}$
(ii) $\log \sqrt{\frac{s^{2}+4}{s^{2}+9}}$
(iii) $\frac{e^{-\mathrm{ps}}}{\sqrt{2 s+3}}$

(b) Use convolution theorem to find :
9. (a) Find the directional derivative of $\mathrm{f}=4 x z^{3}-3 x^{2} y^{2} z$ at the point ($2,-1,1$) along the line equally inclined with co-ordinate axes.
(b) Show that the vector field :

$$
\overline{\mathrm{F}}=\left(x^{2}-y z\right) \bar{i}+\left(y^{2}-z x\right) \bar{j}+\left(z^{2}-x y\right) \bar{k}
$$

is irrotational. Find the scalar point function f such that $\overline{\mathrm{F}}=-\tilde{\mathrm{N}} \mathrm{f}$.
(c) Evaluate $\underset{\mathrm{C}}{\mathrm{O}} \underset{\mathrm{O}}{\mathrm{F}} \cdot d \bar{r}$ for :

$$
\begin{equation*}
\overline{\mathrm{F}}=(2 y+3) \bar{i}+x z \bar{j}+(y z-x) \bar{k} \tag{6}
\end{equation*}
$$

along the curve $x^{2}=4 y, 3 x^{3}=8 z$ from $x=0$ to $x=2$.

Or
10. (a) Use Stokes' theorem to evaluate :

$$
\grave{\omega}^{\tilde{\mathrm{N}} \times \overline{\mathrm{F}} \cdot \hat{h} d s}
$$

s
over the surface of cylinder $x^{2}+y^{2}=4$ bounded by $z=9$, and open at $z=0$, where :

$$
\begin{equation*}
\overline{\mathrm{F}}=(2 x-y+z) \bar{i}+\left(x+y-z^{2}\right) \bar{j}+(3 x-2 y+4 z) \bar{k} \tag{6}
\end{equation*}
$$

(b) Evaluate :

$$
\grave{\varrho}_{s}\left(x^{3} \bar{i}+y^{3} \bar{j}+z^{3} \bar{k}\right) \cdot d \bar{s}
$$

over the surface of sphere $x^{2}+y^{2}+z^{2}=16$ by using Gauss's divergence theorem.
(c) Establish the vector identities :
(i) $\tilde{\mathrm{N}} f(r)=\frac{f \ell(r)}{r} \bar{r},(\bar{r}=x \bar{i}+y \bar{j}+z \bar{k})$

11. (a) Solve the differential equation by using Laplace transform method :

$$
\frac{d^{2} y}{d t^{2}}+4 y=f(t)
$$

where

$$
f(t)=\begin{array}{lc}
1, & 0<t<1 \\
10, & t>1
\end{array}
$$

with $y(0)=0, \quad y \xi(0)=1$.
(b) If the velocity potential of a fluid motion is given by $\mathrm{f}=\log (x y z)$, find the equations of streamlines.
(c) The transfer function of a second order system (with $\mathrm{x}<1$) is given by :

$$
\begin{equation*}
\mathrm{G}(s)=\frac{\mathrm{Y}(s)}{\mathrm{X}(s)}=\frac{6}{s^{2}+1.8 s+1} . \tag{5}
\end{equation*}
$$

Find over shoot, decay ratio and period of oscillation.

Or

12. (a) A liquid is in equilibrium under the action of field force $\overline{\mathrm{F}}$ per unit mass is :

$$
\overline{\mathrm{F}}=1\{(y+z) \bar{i}+(z+x) \bar{j}+(x+y) \bar{k}\} .
$$

Find the pressure at any point of the field.
(b) Solve by using Laplace transform method :

$$
\frac{d y}{d t}+2 y(t)+{ }_{0}^{t} \underset{0}{\grave{\mathrm{o}}} y(t) d t=\sin t,
$$

with $y(0)=1$.
(c) Two non-interacting tanks are connected in series. The time constants are $T_{2}=1$ and $T_{1}=0.5$ and $R_{2}=1$. Find the response using transfer function.

