Questio	on No. 1 is compulsory.	
Attemp	t any four from question No. 2 to 6. T-S and h-s charts permitted.	1 5
3. E.	1) VI RO Cycymic Eng.	6107
1.	a)Describe Walker's classification of cryogenic cryocoolers	5
	b)With a neat sketch, describe functioning of Basic pulse	
	tube refrigerator, orifice & double inlet pulse tube	
	refrigerator.	
	c)Discuss operation of double volume Gifford McMahon	5
	refrigerator.	
	d)Mechanical properties at cryogenic temperature	5
2	a] Show that for an ideal Brayton cycle,	12
	C.O.P. = $T_1/(T_2-T_1) = T_4/(T_3-T_4)$	
	Where, T ₁ = temp of suction of compressor	
	T ₂ = temp of discharge of compressor	
	T ₃ = temp at inlet of expander	
	T ₄ = temp at outlet of expander	
	b) Discuss the veriction of OCD	
	b] Discuss the variation of COP with pressure ratio	8
3.	a)Linde-Hampson cycle cannot be used as it is for Neon,	4
	Hydrogen and Helium. Explain.	-54
	b)In an ideal liquefaction system derive	8
	an expression for work required per unit mass compressed	0
	c)Stating assumptions find an expression for liquid yield &	8-
	figure of merit (FOM) for a simple L-H cycle.	0
	o and the only for a simple Lart cycle.	
4.	a)Find yield & FOM of an air liquefaction system working on	10
	simple L-H cycle. Initial air temp = 300K, PH = 200atm, PL =	
	1atm, heat exchanger $\varepsilon = 0.97$. Heat gained into liquid	
	receiver = 10kJ/kg of air.	
	b)For L-H cycle with air as working medium, high & low	10
	pressures are 100atm & 1atm, isothermal compression at	1000
	300K. Find heat exchanger efficiency at which yield is 80%	
	of max. & compute FOM.	
	a)Explain 'DEEWAR' yoursel & transfer !!	0
	a)Explain 'DEEWAR" vessel & transfer lines.	8
	b)Platinum resistance thermometer read a resistance	12
	reading of 50Ω. Resistance of 0° C. is 100Ω. Determine the	12
	corresponding temp indicated by thermometer for given values of constants.	
	A = 3.946* 10 ⁻³ °C ⁻¹ B = -1.108*10 ⁻⁶ °C ⁻²	
	C = -3.33*10 ⁻¹² °C ⁻⁴	
5.	Determine the number of theoretical plates required to yield	20
	97% as top product stream & 94% of as bottom product. The	
	feed composition is 79% N ₂ & 21% O ₂ The feed system is in	
	saturated liquid & bottom product is also in saturated liquids.	
	The desired flow rate is 28kgmol/s. The heat removal at top	
	column is 1100kW. The column operates at a pressure of	