DipIETE - ET/CS (NEW SCHEME) - Code: DE51/DC51

Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

JUNE 2011

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\lim _{x \rightarrow 0} \frac{\tan x-\sin x}{\sin ^{3} x}$ is :
(A) $-\frac{1}{2}$
(B) $\frac{1}{2}$
(C) 1
(D) 0
b. If $y=\log (\sec x+\tan x)$ then $\frac{d y}{d x}$ is
(A) $-\sec x$
(B) $\tan x$
(C) $-\tan x$
(D) $\sec x$
c. $\int \frac{\sin 4 x}{\sin x}$ is
(A) $2\left(\frac{\sin 3 x}{3}+\sin x\right)+C$
(B) $\frac{\sin 3 x}{3}+\sin x+C$
(C) $\frac{\sin 3 x}{3}-\sin x+C$
(D) $2\left(\frac{\sin 3 x}{3}-\sin x\right)+C$
d. $A=\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]$, then $A^{2}-4 A+3 I$ is
(A) $\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$
(B) $\left[\begin{array}{cc}0 & -1 \\ 0 & 3\end{array}\right]$
(C) $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(D) $\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right]$
e. If $\Delta=\left|\begin{array}{lll}1 & \mathrm{a} & \mathrm{b}+\mathrm{c} \\ 1 & \mathrm{~b} & \mathrm{c}+\mathrm{a} \\ 1 & \mathrm{c} & \mathrm{a}+\mathrm{b}\end{array}\right|$, then value of Δ is
(A) $(\mathrm{b}-\mathrm{c})(\mathrm{c}-\mathrm{a})(\mathrm{a}-\mathrm{b})$
(B) 0
(C) $a+b+c$
(D) $-\mathrm{a}-\mathrm{b}-\mathrm{c}$
f. The order and degree of differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=5 \frac{d^{2} y}{d x^{2}}$ is
(A) Order $=2$, Degree $=2$
(B) Order $=1$, Degree $=2$
(C) Order $=2$, Degree $=1$
(D) Order $=1$, Degree $=1$
g. The term independent of x in the expansion of $\left(\frac{3 x^{2}}{2}-\frac{1}{3 x}\right)^{9}$ is
(A) $\frac{19}{18}$
(B) $\frac{5}{18}$
(C) $\frac{11}{18}$
(D) $\frac{7}{18}$
h. The value of $\operatorname{cosec} 2 \theta+\cot 2 \theta$ is
(A) $\cot 3 \theta$
(B) $\tan \theta$
(C) $\cot \theta$
(D) $\tan 2 \theta$
i. The equation of the straight line which makes an angle of 45° with x - axis and cuts of an intercept 3 on $y-$ axis above origin
(A) $x-y+3=0$
(B) $x+y+3=0$
(C) $2 x+y-3=0$
(D) $x-2 y+3=0$
j. The centroid of the triangle with vertices $(2,7),(3,4)$ and $(-6,4)$ is
(A) $\left(\frac{2}{3}, 5\right)$
(B) $\left(\frac{1}{3}, 5\right)$
(C) $\left(-\frac{2}{3}, 5\right)$
(D) $\left(-\frac{1}{3}, 5\right)$

Answer any FIVE Questions out of EIGHT Questions.
 Each question carries 16 marks.

Q. 2 a. Show that, $\cos 20^{\circ} \cos 30^{\circ} \cos 40^{\circ} \cos 80^{\circ}=\frac{\sqrt{3}}{16}$
b. In a triangle $A B C$, if $\sin 2 A+\sin 2 B=\sin 2 C$, prove that either $A=90^{\circ}$ or $B=90^{\circ}$.
Q. 3 a. Find the middle terms in the expansion of $\left(3 x-\frac{x^{3}}{6}\right)^{7}$.
b. The fourth, seventh and the last term of a G.P. are 10,80 and 2560 respectively. Find the first term and the number of terms in G.P.
Q. 4 a. Show that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$.
b. Using matrix method, solve the following system of equation and also check whether the system is consistent or inconsistent $x+y+z=6 ; 2 x-y+z=3$; $x-2 y+3 z=6$
Q. 5 a. A line passes through $(3,4)$ and the sum of its intercepts on the axis is 14 , find the equation of the line.
b. If p is the length of the perpendicular from the origins to the line $\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{b}}=1$, then prove that $\frac{1}{\mathrm{p}^{2}}=\frac{1}{\mathrm{a}^{2}}+\frac{1}{\mathrm{~b}^{2}}$.
Q. 6 a. Find the equation of the circle which passes through the points $(1,1) \&(2,2)$ and whose radius is 1 .
b. Find the equation of the ellipse having axis along coordinate axis, passing through $(4,3) \&(-1,4)$.
Q. 7 a. If $y=\sin \left(m \sin ^{-1} x\right)$, prove that

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+m^{2} y=0 \tag{8}
\end{equation*}
$$

b. Show that $\frac{\log \mathrm{x}}{\mathrm{x}}$ has a maximum value at $\mathrm{x}=\mathrm{e}$.
Q. 8 a. Evaluate $\int \operatorname{cosec}^{3} x d x$.
b. Evaluate $\int_{0}^{\pi / 2} \frac{1}{3 \sin ^{2} x+4 \cos ^{2} x} d x$
Q. 9 a. Solve the initial value problem:

$$
\begin{equation*}
\sin x \cos y d x+\cos x \sin y d y=0, y(0)=\frac{\pi}{4} \tag{8}
\end{equation*}
$$

b. Solve $\frac{d y}{d x}=\frac{y+x-2}{y-x-4}$.

