NOTE:-

- 1. Attempt all questions. Rough work must be enclosed with answer book.
- 2. While answering, refer to a question by its serial number as well as section heading. (eg.Q2/Sec.A)
- 3. There is no negative marking.
- 4. Answer each of Sections A, B, C at one place. Elegant solutions will be rewarded.
- 5. Use of calculators, slide rule, graph paper and logarithmic, trigonometric and statistical tables is not permitted.

Note:- All answers to questions in Section-A, Section-B and Section-C must be supported by mathematical arguments. In each of these sections order of the questions must be maintained.

SECTION-A

	-	the correct answers by	•	ernauve answers. One	(5x2=10 MARKS)	
1.	Let l_1 , l_2 be any two parallel lines and B, C be any two points on l_1 and A_1 , A_2 ,, A_{2010} be points on l_2 . If Δ_i denotes the area of					
	the triangle A _i BC and if $\sum_{i=1}^{2010} \Delta_i = 2010$, Then the area of Δ A ₂₀₁₀ BC is					
	A) 1	B) ½	C) 2	D) 2010	E) 1005	
2.	Let $\{a_n\}$ be a sequence A) 6	of integers such that a ₁ = B) 70	= 1, $a_{m+n} = a_m + a_n + mn$ for C) 78	or all positive integers m D) 76	and n. Then a_{12} is E) 72	
3.	In a triangle ABC, a, b, c denote the lengths of the sides BC, CA, AB. If D is the midpoint of the side BC and AD is perpendicular to AC, then A) $3b^2 = a^2 - c^2$ B) $3a^2 = b^2 - 3c^2$ C) $b^2 = a^2 - c^2$ D) $a^2 + b^2 = 5c^2$ E) none of these					
4.	If k is an integer then which of the following is true? A) An integer of the form 4k+1 can always be put in the form 2k-1 B) An integer of the form 4k+3 can always be put in the form 2k+1 C) An integer of the form 2k-1 can always be put in the form 4k+1 D) An integer of the form 2k-1 can always be put in the form 4k+3 E) An integer of the form 2k+1 can always be put in the form 4k+3					
5.	The number of element A) 0	ts in {(a, b, c) / a=b, (a-c) B) 1	$(a)^2 = 0$, $a+b+c=0$, a, b, c and C) 6	re real numbers} is D) 3	E) infinitely many	
TO I	· E' . O	.	SECTION-B	4 11 1	(5.2.10.MARKS)	
	This section has Five Questions. In each question a blank is left. Fill in the blank. (5x2=10 MARKS)					
1.	The no. of solutions of the equation $xy(x+y)=2010$, where x and y denote positive prime numbers, is					
2.	The number of elements in the set $\{n \in N / n^3 - 8n^2 + 20n - 13 \text{ is a prime number}\}\$ is					

- The solution set of the equation $\sqrt{x^2 4x + 4} + (x-2) = 0$ is
- Given any two diameters of a circle the convex quadrilateral formed by joining the extremities of the diameters is always a rectangle. True/False
- If $P = 3^{2010} + 3^{-2010}$, $Q = 3^{2010} 3^{-2010}$ then $P^2 Q^2 =$

(5x2=10 MARKS)

- Solve the equation $\log_{2010}(2009x) = \log_{2009}(2010x)$. 1.
- In a quadrilateral ABCD, AB = 3, BC = 4, CD = 5, \angle ABC = \angle BCD = 120° . Find the area of the quadrilateral.
- I was trying to solve $\frac{4}{x-2} > 5$. While writing the question I mistakenly wrote a digit other than 5 and solved the inequality and got 2<x<4. What digit did I write possibly?
- In a right angled triangle what is the relation between the square of the altitude on to the hypotenuse and the product of the segments of the hypotenuse?
- Is it possible to find two functions f and g such that the domain of f is not finite, the domain of g is finite, gof is defined? Justify vour answer.

SECTION-D (5x4=20 MARKS)

- If the last digits (unit places) of the products 1.2., 2.3, 3.4,.., n(n+1) are added, the result is 2010. How many products are used?
- Show that four divides any perfect square or leaves a remainder 1. Also show that nine divides cube of any integer or leaves 1 or 8 as remainder.
- Let AB be a line segment of length 26. Let C and D be located on the line segment AB such that AC = 1 and AD = 8. Let E and F be the points on one of the semi circles with diameter AB for which EC and FD are perpendicular to AB. Find the length of the line segment EF.
- In each of the following cases give an example of a system of two linear equations in two variables x and y.
 - i) A system having exactly one solution

ii) A system having no solution

- iii) A system having infinitely many solutions
- Using Mathematical Induction Prove that $3^{2n} + 7$ is divisible by 8, \forall n \in N.