- B.:(1) Question No. 1 is compulsory.
 - (2) Attempt any four questions from remaining six questions.
 - (3) Figures to right indicate full marks.
 - (a) Find Laplace Transform of $\int_{0}^{t} \frac{\sin u}{u} du$. 5
 - (b) Find the image of |z 3i| = 3 under the mapping $w = \frac{1}{z}$.
 - (c) Obtain Laurent's series for $f(z) = \frac{4z+3}{z(z-3)(z+2)}$ in the annular region between, 5 |z| = 2 and |z| = 3.
 - (d) Show that $\sin x$, $\sin 3x$, $\sin 5x$, form a set of orthogonal functions over 5 $\left[0, \frac{\pi}{2}\right]$. Determine the corresponding orthonormal set.
 - (a) Show that $\int_{0}^{\infty} \frac{\cos \lambda x}{\lambda^2 + 1} d\lambda = \frac{\pi}{2} e^x, x \ge 0$. By definition of Fourier cosine integral.
 - (b) If f(z) is a regular function of z then prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$. 6
 - (c) State and prove convolution theorem and hence find 8

$$L^{-1} \frac{(s+3)^2}{(s^2+6s+5)^2}$$

(a) Find Fourier series of

$$f(x) = 0 -2 \le x \le -1 = 1 + x -1 \le x \le 0 = 1 - x 0 \le x \le 1 = 0 1 \le x \le 2$$

(b) Evaluate using Cauchy's Integral

Formula
$$\int_{c} \frac{z^2 + 4}{(z-2)(z+3i)} dz$$
, where c is

(i)
$$|z + 1| = 2$$

(ii)
$$|z-2| = 2$$

(c) Use Laplace transform method to solve

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 8y = 1, \text{ where } y(0) = 0, y'(0) = 1$$

6

6

8

$$\oint_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{z^{2} + 3z + 2} dz, \text{ where c is (i)} |z| = 1, \quad \text{(ii)} |z| < 2.$$

- Find the analytic function f(z) = u + iv, If $v = e^{x}(x \cdot \sin y + y \cdot \cos y)$.
- Find the Fourier sine series for unity in $0 < x < \pi$ and hence show that -

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$

(a) Find Inverse Laplace Transform of 5.

(i)
$$\log \left(\frac{s+a}{s+b} \right)$$
 (ii) $\frac{8e^{-3s}}{s^2+4}$

(b) Using Laplace Transform, Evaluate
$$\int_{0}^{\infty} t^{3} e^{-t} \sin dt$$
.

Find the Bilinear transformation that maps the point z = -i, 0, i into the points w = -1, i, 1 respectively. Into what curve the y-axis is transformed to this

Ξ

ρÇ

Fir

E۷.

_v2

Dia

If () Or

In a

and

Fin ele.

Find the complex form of Fourier series of $f(x) = e^{ax}$ $(-\pi < x < \pi)$ in the form

$$e^{ax} = \frac{\sinh a\pi}{\pi} \sum_{n=-\infty}^{\infty} (-1)^n \frac{a+in}{a^2+n^2} \cdot e^{inx}$$

- (b) Show that the image of the rectangular hyperbola $x^2 y^2 = 1$, under the transformation $w = \frac{1}{2}$ is the lemniscate.
- Evaluate -(c)

(i)
$$\int_0^{\pi} \frac{d\theta}{3 + 2\cos\theta}$$
 (ii)
$$\int_{-\infty}^{\infty} \frac{dx}{\left(x^2 + a^2\right)\left(x^2 + b^2\right)}$$

(i)
$$t^2 - e^{-2t} + \cosh^2 3t$$
 (ii) $e^t \sin 2t \sin 3t$

(b) If
$$f(a) = \int_{c} \frac{3z^2 + 7z + 1}{z - a} dz$$

where c is a circle
$$|z| = 2$$
, then find –

(i) $f(-3)$ (ii) $f(i)$ (iii) $f(1-i)$ (iv) $f'(1-i)$

Obtain the Fourier series for the function (c)

$$f(x) = 0 -\pi \le x \le 0$$
$$= \sin x 0 \le x \le \pi$$

Hence deduce that
$$\frac{\pi - 2}{4} = \frac{1}{1 \cdot 3} - \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7}$$