SECOND SEMESTER APRIL 2005

BASIC ELECTRONICS

Question 1

i) Do the following conversion
a. A3E89 ${ }_{16}$ to octal
b. $82 \mathrm{~B}_{8}$ to hexadecimal
ii) Subtract the following binary numbers:
a. 1100-1001
b. 11010-10111
iii) Express -85 in 8 bit sign magnitude 1's and 2's complement form.
iv) Add 56 and -27 using 2 's complement form.
v) The resistance of the semiconductor material decreases with an increase in temperature -Justify the following starement.
vi) Distinguish between zener breakdown voltage and Avalanche breakdown. Which of the following can be used in the high voltage application?
vii) Draw the output of the following circuit:

viii) Bring out the difference between BJT and FET.
ix) Draw the output of the following circuit.

x) If $\sqrt{41}_{b}=5_{b}$ find the value of b.

Question 2

Radiation falls on the semiconductor specimen that is uniformly illuminated, and a steady state is reached. At $t=0$, the light source is switched off. Sketch the minority carrier concentration as the function of time for $t>=0$. Define all the symbols in your equation describing the sketch.

Question 3

A crystal diode having an internal resistance $r_{f}=20$ is used for half wave rectification. If the applied voltage is $v=50 \sin 10 t$ and the load resistance $R_{L}=800$, determine the following:
(i) $I_{m} I_{d c}$ and $I_{\pi n s}$.
(ii) AC power input and DC power output.
(iii) DC output voltage
(iv) Ripple factor.

Question 4

The BJT shown in the figure below has the following
All bypass and coupling capacitor assumed to have zero reactance at the signal frequency. Find the quiescent condition $\left(\mathrm{V}_{\mathrm{CEQ}}, I_{\mathrm{CQ}}\right)$ the small signal equivalent circuit the current, gain and input impedance seen by the current source I_{C}.

Question 5

Consider the opamp to be ideal. What would be the value of R for which the oscillation will be sustained? What is the frequency of oscillation?

Question 6

(i) Convert the following expression to canonical SOP form(5)
$(\bar{A}+C) \cdot(A . B+B . C+A . C)$
(ii) Convert the following expression to canonical POS form.(5)
$=A+A . B+\bar{A} \cdot C$

Question 7

For the emitter bias configuration of the following figure below with the following specification:
$\mathrm{I}_{\mathrm{CQ}}=(1 / 2) \mathrm{C}_{\text {SAT }}, \mathrm{I}_{\mathrm{C} \text { sat }}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{e}}=18 \mathrm{~V}$
And $\beta=110$, determine the value of $R_{c} R_{E}$ and R_{B}.

Question 8
(i) Explain the need for the communication system. Hence describe the role of modulation and demodulation in it.(5)
(ii) What is the input impedance of the ideal voltmeter and why? Explain CRO as a voltmeter?

