B. Tech Degree VI Semester (Supplementary) Examination October 2009

ME 601 INSTRUMENTATION AND CONTROL SYSTEMS

(2006 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART A

(Answer ALL questions)

 $(8 \times 5 = 40)$

- I. (a) Briefly explain the functional elements of an instrument.
 - (b) Distinguish between active and passive transducers.
 - (c) Explain the working of hydraulic dynamometer.
 - (d) Explain the working of ORSAT's apparatus.
 - (e) Plot the unit step function, ramp function and a unit impulse function.
 - (f) Develop the mathematical model of a spring-mass-dashpot system shown.

(g) Discuss the stability of the spring-mass-dash pot system for different values of damping factor (ζ) . Show the poles on the complex plane when $\zeta = 0$, $\zeta < 1$,

$$\zeta = 1, \zeta > 1.$$

(h) \angle Explain the working of stepper motors.

PART B

 $(4 \times 15 = 60)$

II. Explain the methods of correction of spurious inputs in an instrument. (15)

OR

- III. (a) Explain the working of a displacement measuring potentiometer as a zero order instrument. (8)
 - (b) Discuss the step response of a first-order-instrument. (7)
- IV. (a) Explain the working of Gieger Muller Counter. (8)
 - (b) Explain the temperature compensation in strain gauges. (7)

OR

V. Explain the working of

- (i) optical pyrometer (8)
- (ii) sound level meter (7)

(Turn Over)

VI. Obtain the analogous electrical network of the system shown using force-voltage analogy (15)

VII. Develop the transfer function for the following system shown.

VIII. Sketch the root locus for a system having (k > 0).

$$G(s)H(s) = \frac{K}{S(S+1)(S+2)(S+4)}; k > 0.$$
 (15)

IX. Draw the Bode plot for a unity feed back control system having $G(s) = \frac{20}{(S+2)}$. (15)
