MODULE-V

- IX a) Define level of significance, Type I error, Type II error.
 - b) The mean of a sample of size 20 from a normal population $N(\mu, 8)$ was found to be 81.2. Find a 90% confidence interval for μ .
 - c) Three specimens of high quality concrete had compressive strength 357, 359, 413 (in kg/cm²) and for three specimens of ordinary concrete and the values were 346, 358, 302.

 Test for quality of the population means $\mu_1 = \mu_2$ against the alternative $\mu_1 > \mu_2$. (8)

OR

- X a) Define null hypothesis and alternative hypothesis. A random sample of size 18 is taken from a normal distribution $N(\mu, \sigma^2)$. Test the hypothesis $H_o: \sigma^2 = 0.36$ against $H_1: \sigma^2 > 0.36$ at $\alpha = 0.05$ given the sample variance $s^2 = 0.68$. (12)
 - b) Two independent random samples of size $n_1 = 10$, $n_2 = 7$ where observed to have sample variance $s_1^2 = 16$, $s_2^2 = 3$ Using $\alpha = 0.10$, test $H_o: \sigma_1^2 = \sigma_2^2$ against $H_i: \sigma_1^2 \neq \sigma_2^2$.

BTS-C023 ME

B. Tech. Degree III Semester Examination January 2002

M

IT/CS/EC/CE/ME/SE/EI/EB/EE 301 ENGINEERINGMATHEMATICS-III

Time: 3 Hours

b)

(6)

Max. Marks: 100

MODULE-I

a) Obtain the Fourier series of

$$f(x) = \begin{cases} -x & -\pi < x \le 0 \\ x & 0 \le x \le \pi, \ f(x+2\pi) = f(x) \end{cases}$$

Deduce
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$$
 (10)

b) Find the Fourier transform of

$$f(x) = \begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$

Hence evaluate
$$\int_{0}^{\infty} \frac{\sin x}{x} dx$$
 (10)

a) Represent the following function in the Fourier integral form

$$f(x) = \begin{cases} x^2 & 0 < x < \mathbf{i} \\ o & x > 1 \end{cases} \tag{10}$$

Define gamma function and prove that

$$\Gamma(n) \Gamma\left(n + \frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2n-1}} \Gamma(2n)$$
 (10)

(P.T.O)

VI

VII

b)

MODULE-II

III a) Prove that
$$\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} o & \alpha \neq \beta \\ \frac{1}{2} \left[J_{n+1}^{(\alpha)} \right]^{2}, \alpha = \beta \end{cases}$$

where
$$\alpha, \beta$$
 are roots of $J_n(x) = 0$ (12)

b) Express
$$J_5(x)$$
 in terms of $J_o(x)$ and $J_1(x)$ (8)

OR

N a) Prove that
$$nP_n(x) = xP_n^1(x) - P_{n-1}^1(x)$$
 (10)

b) Show that
$$(1-2xt+t^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} t^n P_n(x)$$
 (10)

MODULE-III

V a) (i) Solve
$$(z-y)p+(x-z)q=y-x$$

(ii) Solve
$$\sqrt{p} + \sqrt{q} = x + y$$
 (10)

b) A tightly stretched string with fixed end points x = 0 and $x = \ell$ is initially in a position given by $y(x,0) = y_o \sin^3\left(\frac{\pi x}{\ell}\right).$ If it is released from rest from this position, find the displacement y at any time and at any distance from the end x = 0. (10)

UK

Using the method of separation of variables solve the Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.$ (8)

An infinitely long plane uniform plate is bounded by two parallel edges x = 0 and $x = \ell$, and an end at right angles to them. The breadth of this edge y = 0 is ℓ and is maintained at a temperature f(x). All the other three edges are at temperature zero. Find the steady state temperature at any interior point of the plate. (12)

MODULE-IV

a) The following is the probability density function of a random variable X.

$$x = 0$$
 1 3 7 13
 $P(X=x) = \frac{1}{8}$ $\alpha = \frac{1}{6}$ $\frac{1}{4}$ β

Find α and β if $P(X^2 = 4X - 3) = \frac{1}{2}$ (7)

- b) Obtain the mean and variance of the binomial distribution. (7)
- c) Suppose that X has a Poisson distribution.

If
$$P(X = 2) = \frac{2}{3}P(X = 1)$$
. Find $P(X = 3)$ (6)

OR

II a) In a test on 2000 electric bulbs, it was found that the life of a particular make was normally distributed with an average life of 2040 hrs. and S.D. 60 hrs. Estimate the no. of bulbs likely to burn for

- (i) More than 2150 hrs. (ii) More than 1920 hrs. but less than 2160 hrs. (10)
- b) Find the equation of the regression line of y on x and x on y given the following data.

Contd....4