MICROWAVE ENGINEERING

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

POWER OF KNOWLEDGE marks for the questions.

Explain the following in brief: 2x10

(a) What are the three most common types of guiding structures that support TEM waves?

P.T.O.

- (b) Where do the minima of the voltage standing wave on a lossless line with a resistive termination occur, if R_L > R_o?
- (c) What is meant by a cut-off frequency of a waveguide?
- (d) Which mode is the dominant mode in a circular waveguide?
- magnetic field' as it is used in connection with magnetrons?
- (f) What is the purpose of directional couplers?
- (g) Why ferrite devices are called non-reciprocal devices ?
- (h) Which antenna system is suitable for microwave communication?

- (i) On what factors the selection of an antenna depends ?
- (i) What is an elevated duct ?
- 2. (a) Find the expression for characteristic impedance of a short-circuited and open-circuited line. Find also the values of general section coefficient and SWR under such the section coefficient and SWR under such that the section coefficient and section coefficie
 - (b) A long transmission line carries 5 kW at 500 V to a matched load -
 - (i) What is the reflection coefficient at the load end, when a load of impedance $200 + j100 \Omega$ is connected? 6

CPEC 5307 3 P.T.O.

- (ii) What is the reflection coefficient at the load end when the load is disconnected?
- 3. (a) State the boundary conditions to be satisfied by E_z for TM waves in a rectangular waveguide. Which TM mode has the lowest cut-off frequency of all the TM modes in a rectangular waveguide?
 - (b) In an air-filled square waveguide with dimensions a =1.2 cm, E_x = -10 sin (2 π y/a) sin (ω t-150 z) V/m.
 - (i) What is the mode of propagation?
 - (ii) Find the cut-off wavelength.
 - (iii) Calculate the frequency of operation.

- 4. (a) (i) Are the field patterns in a cavity resonator travelling waves or standing waves? How do they differ from those in a waveguide?
 - (ii) What are the modes of the lowest orders in a rectangular cavity resonator?
 - b) What field components exist in a circular cylindrical waveguide operating in the dominant mode?
- (a) With sketches, describe waveguide matching terminations and attenuators.
 - (b) In a magic Tree, if the waves are input to both ports of the main guide, then determine the output in E and H arm of the following cases:

5

6

Contd.

CPEC 5307

P.T.O.

- (i) Waves of equal amplitude and phase are incident.
- (ii) Waves of equal amplitude but opposite phase are incident.
- 6. (a) With the help of a circuit diagram explain how Gunn diode can be used as an oscillator and an amplifier.
 - (b) A GaAs Gunn diode has a drift length of 10 μm. Determine the frequency of oscillation.

4

- (a) Describe, in brief, the space wave propagation.
 - (b) Explain the term 'fading'. Describe different types of fading of space wave signals. 5

 With neat sketches discuss different types of horn antenna. Discuss the application of the horn and give its advantages.