MICROWAVE ENGINEERING Full Marks - 70 Time: 3 Hours Answer Question No. 1 which is compulsory and any five from the rest. POWER OF KNOWLEDGE marks for the questions. Explain the following in brief: 2x10 (a) What are the three most common types of guiding structures that support TEM waves? P.T.O. - (b) Where do the minima of the voltage standing wave on a lossless line with a resistive termination occur, if R_L > R_o? - (c) What is meant by a cut-off frequency of a waveguide? - (d) Which mode is the dominant mode in a circular waveguide? - magnetic field' as it is used in connection with magnetrons? - (f) What is the purpose of directional couplers? - (g) Why ferrite devices are called non-reciprocal devices ? - (h) Which antenna system is suitable for microwave communication? - (i) On what factors the selection of an antenna depends ? - (i) What is an elevated duct ? - 2. (a) Find the expression for characteristic impedance of a short-circuited and open-circuited line. Find also the values of general section coefficient and SWR under such the section coefficient and SWR under such that coefficie - (b) A long transmission line carries 5 kW at 500 V to a matched load - - (i) What is the reflection coefficient at the load end, when a load of impedance $200 + j100 \Omega$ is connected? 6 CPEC 5307 3 P.T.O. - (ii) What is the reflection coefficient at the load end when the load is disconnected? - 3. (a) State the boundary conditions to be satisfied by E_z for TM waves in a rectangular waveguide. Which TM mode has the lowest cut-off frequency of all the TM modes in a rectangular waveguide? - (b) In an air-filled square waveguide with dimensions a =1.2 cm, E_x = -10 sin (2 π y/a) sin (ω t-150 z) V/m. - (i) What is the mode of propagation? - (ii) Find the cut-off wavelength. - (iii) Calculate the frequency of operation. - 4. (a) (i) Are the field patterns in a cavity resonator travelling waves or standing waves? How do they differ from those in a waveguide? - (ii) What are the modes of the lowest orders in a rectangular cavity resonator? - b) What field components exist in a circular cylindrical waveguide operating in the dominant mode? - (a) With sketches, describe waveguide matching terminations and attenuators. - (b) In a magic Tree, if the waves are input to both ports of the main guide, then determine the output in E and H arm of the following cases: 5 6 Contd. **CPEC** 5307 P.T.O. - (i) Waves of equal amplitude and phase are incident. - (ii) Waves of equal amplitude but opposite phase are incident. - 6. (a) With the help of a circuit diagram explain how Gunn diode can be used as an oscillator and an amplifier. - (b) A GaAs Gunn diode has a drift length of 10 μm. Determine the frequency of oscillation. 4 - (a) Describe, in brief, the space wave propagation. - (b) Explain the term 'fading'. Describe different types of fading of space wave signals. 5 With neat sketches discuss different types of horn antenna. Discuss the application of the horn and give its advantages.