Mathematics Paper 2007

IMPORTANT NOTE FOR CANDIDATES

- Attempt ALL the 29 questions.
- Questions 1-15 (objective questions) carry <u>six</u> marks each and questions 16-29 (subjective questions) carry <u>fifteen</u> marks each.
- Write the answers to the objective questions in the <u>Answer Table for</u> <u>Objective Questions</u> provided on page 7 only.

1. Which of the following sets is a basis for the subspace

$$W = \left\{ \begin{bmatrix} x & y \\ 0 & t \end{bmatrix} : x + 2y + t = 0, \ y + t = 0 \right\}$$

of the vector space of all real 2×2 matrices?

- $(A) \quad \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ $(B) \quad \left\{ \begin{bmatrix} 2 & 1 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right\}$ $(C) \quad \left\{ \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} \right\}$ $(D) \quad \left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \right\}$
- 2. Let G be an Abelian group of order 10. Let $S = \{g \in G : g^{-1} = g\}$. Then the number of non-identity elements in S is
 - (A) 5
 - (B) 2
 - (C) 1
 - (D) 0
- 3. Let *R* be the ring of polynomials over \mathbb{Z}_2 and let *I* be the ideal of *R* generated by the polynomial $x^3 + x + 1$. Then the number of elements in the quotient ring R/I is
 - (A) 2
 - (B) 4
 - (C) 8
 - (D) 16

4. Let $f: \mathbf{R} \to \mathbf{R}$ be a continuous function. If $\int_{0}^{x} f(2t) dt = \frac{x}{\pi} \sin(\pi x)$ for all $x \in \mathbf{R}$, then f(2) is

equal to

- (A) –1
- (B) 0
- (C) 1
- (D) 2

5. Suppose (c_n) is a sequence of real numbers such that $\lim_{n \to \infty} |c_n|^{1/n}$ exists and is non-zero. If the radius of convergence of the power series $\sum_{n=0}^{\infty} c_n x^n$ is equal to r, then the radius of

convergence of the power series $\sum_{n=1}^{\infty} n^2 c_n x^n$ is

(A) less than r

- (B) greater than r
- (C) equal to r

(D) equal to 0

6. The rank of the matrix
$$\begin{bmatrix} 1 & 4 & 8 \\ 2 & 10 & 22 \\ 0 & 4 & 12 \end{bmatrix}$$
 is

- (A) 3
- (B) 2
- (C) 1
- (D) 0

7. If k is a constant such that $xy + k = e^{(x-1)^2/2}$ satisfies the differential equation

$$x\frac{dy}{dx} = (x^2 - x - 1)y + (x - 1)$$
, then k is equal to

- (A) 1
- (B) 0
- (C) –1
- (D) –2
- 8. Which of the following functions is uniformly continuous on the domain as stated?
 - (A) $f(x) = x^2$, $x \in \mathbf{R}$

(B)
$$f(x) = \frac{1}{x}, x \in [1, \infty)$$

(C)
$$f(x) = \tan x$$
, $x \in (-\pi/2, \pi/2)$

(D) $f(x) = [x], x \in [0, 1]$

([x] is the greatest integer less than or equal to x)

- 9. Let A(t) denote the area bounded by the curve $y=e^{-|x|}$, the x-axis and the straight lines x=-t and x=t. Then $\lim_{t\to\infty} A(t)$ is equal to
 - (A) 2
 - (B) 1
 - (C) 1/2
 - (D) 0

- 10. Let *C* denote the boundary of the semi-circular disk $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, y \ge 0\}$ and let $\varphi(x,y) = x^2 + y$ for $(x,y) \in D$. If \hat{n} is the outward unit normal to *C*, then the integral $\oint_C (\vec{\nabla} \varphi) \cdot \hat{n} ds$, evaluated counter-clockwise over *C*, is equal to
 - (A) 0
 - (B) $\pi 2$
 - (C) π
 - (D) $\pi + 2$
- 11. Let $\vec{u} = (ae^x \sin y 4x)\hat{i} + (2y + e^x \cos y)\hat{j} + az\hat{k}$, where *a* is a constant. If the line integral $\oint \vec{u} \cdot d\vec{r}$ over every closed curve *C* is zero, then *a* is equal to
 - (A) –2
 - (B) –1
 - (C) 0
 - (D) 1

12. One of the integrating factors of the differential equation $(y^2 - 3xy)dx + (x^2 - xy)dy = 0$ is

- (A) $1/(x^2y^2)$
- (B) $1/(x^2y)$
- (C) $1/(x y^2)$
- (D) 1/(x y)

13. Let $f: \mathbf{R}^2 \to \mathbf{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2 y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Which of the following statements holds regarding the continuity and the existence of partial derivatives of f at (0,0)?

- (A) Both partial derivatives of f exist at (0,0) and f is continuous at (0,0)
- (B) Both partial derivatives of f exist at (0,0) and f is NOT continuous at (0,0)
- (C) One partial derivative of f does NOT exist at (0,0) and f is continuous at (0,0)
- (D) One partial derivative of f does NOT exist at (0,0) and f is NOT continuous at (0,0)

14. Let (a_n) be an increasing sequence of positive real numbers such that the series $\sum_{k=1}^{n} a_k$ is

divergent. Let $s_n = \sum_{k=1}^n a_k$ for n = 1, 2, ... and $t_n = \sum_{k=2}^n \frac{a_k}{s_{k-1}s_k}$ for n = 2, 3, ... Then $\lim_{n \to \infty} t_n$ is equal to

- (A) $1/a_1$
- (B) 0
- (C) $1/(a_1 + a_2)$
- (D) $a_1 + a_2$
- 15. For every function $f:[0,1] \to \mathbb{R}$ which is twice differentiable and satisfies $f'(x) \ge 1$ for all $x \in [0,1]$, we must have
 - (A) $f''(x) \ge 0$ for all $x \in [0,1]$
 - (B) $f(x) \ge x$ for all $x \in [0,1]$
 - (C) $f(x_2) x_2 \le f(x_1) x_1$ for all $x_1, x_2 \in [0,1]$ with $x_2 \ge x_1$
 - (D) $f(x_2) x_2 \ge f(x_1) x_1$ for all $x_1, x_2 \in [0,1]$ with $x_2 \ge x_1$

16. (a) Let
$$M = \begin{bmatrix} 1+i & 2i & i+3\\ 0 & 1-i & 3i\\ 0 & 0 & i \end{bmatrix}$$
. Determine the eigenvalues of the matrix
 $B = M^2 - 2M + I$. (9)

(b) Let N be a square matrix of order 2. If the determinant of N is equal to 9 and the sum of the diagonal entries of N is equal to 10, then determine the eigenvalues of N.
 (6)

17. (a) Using the method of variation of parameters, solve the differential equation

$$x^2\frac{d^2y}{dx^2}+x\frac{dy}{dx}-y=x^2,$$

given that x and $\frac{1}{x}$ are two solutions of the corresponding homogeneous equation.

(9)

(b) Find the real number α such that the differential equation

$$\frac{d^2y}{dx^2} + 2(\alpha - 1)(\alpha - 3)\frac{dy}{dx} + (\alpha - 2)y = 0$$

has a solution $y(x) = a \cos(\beta x) + b \sin(\beta x)$ for some non-zero real numbers a, b, β . (6)

Let a, b, c be non-zero real numbers such that $(a-b)^2 = 4ac$. Solve the differential 18.(a) equation $a\left(x+\sqrt{2}\right)^2 \frac{d^2y}{dx^2} + b\left(x+\sqrt{2}\right)\frac{dy}{dx} + cy = 0.$ (9)

(6)

(b) Solve the differential equation

$$dx + (e^{y \sin y} - x)(y \cos y + \sin y) dy = 0.$$

19. Let $f(x, y) = x(x-2y^2)$ for $(x, y) \in \mathbb{R}^2$. Show that f has a local minimum at (0, 0) on every straight line through (0, 0). Is (0, 0) a critical point of f? Find the discriminant of f at (0, 0). Does f have a local minimum at (0, 0)? Justify your answers. (15)

20. (a) Find the finite volume enclosed by the paraboloids $z=2-x^2-y^2$ and $z=x^2+y^2$. (9)

(6)

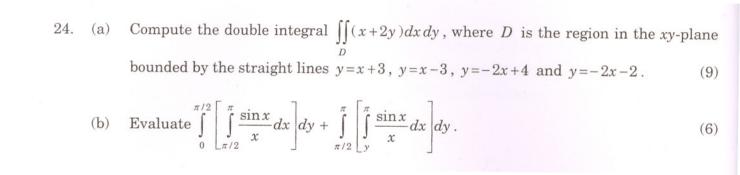
(b) Let $f:[0,3] \to \mathbb{R}$ be a continuous function with $\int f(x)dx = 3$. Evaluate

 $\int_{0}^{3} \left[x f(x) + \int_{0}^{x} f(t) dt \right] dx \, .$

- Let D be the region bounded by the concentric spheres $S_1: x^2 + y^2 + z^2 = a^2$ and 22.(a) $S_2: x^2 + y^2 + z^2 = b^2$, where a < b. Let \hat{n} be the unit normal to S_1 directed away from the origin. If $\nabla^2 \varphi = 0$ in D and $\varphi = 0$ on S_2 , then show that $\iiint \left| \vec{\nabla} \varphi \right|^2 dV + \iint \varphi \left(\vec{\nabla} \varphi \right) \cdot \hat{n} \, dS = 0 \, .$ (9)
 - (b) Let C be the curve in \mathbb{R}^3 given by $x^2 + y^2 = a^2$, z = 0 traced counter-clockwise, and let $\vec{F} = x^2 y^3 \hat{i} + \hat{j} + z \hat{k}$. Using Stokes' theorem, evaluate $\oint \vec{F} \cdot d\vec{r}$. (6)

23. Let V be the subspace of \mathbf{R}^4 spanned by the vectors (1,0,1,2), (2,1,3,4) and (3,1,4,6). Let $T: V \to \mathbf{R}^2$ be a linear transformation given by T(x,y,z,t) = (x-y, z-t) for all $(x,y,z,t) \in V$. Find a basis for the null space of T and also a basis for the range space of T.

(15)



25. (a) Does the series
$$\sum_{k=1}^{\infty} \frac{(-1)^k k + x^k}{k^2}$$
 converge uniformly for $x \in [-1, 1]$? Justify. (9)

(b) Suppose (f_n) is a sequence of real-valued functions defined on **R** and f is a real-valued function defined on **R** such that $|f_n(x) - f(x)| \le |a_n|$ for all $n \in \mathbb{N}$ and $a_n \to 0$ as $n \to \infty$. Must the sequence (f_n) be uniformly convergent on **R**? Justify. (6)

26. (a) Suppose f is a real-valued thrice differentiable function defined on **R** such that f'''(x)>0 for all $x \in \mathbf{R}$. Using Taylor's formula, show that

$$f(x_2) - f(x_1) > (x_2 - x_1) f'\left(\frac{x_1 + x_2}{2}\right)$$
 for all x_1 and x_2 in **R** with $x_2 > x_1$.

(b) Let (a_n) and (b_n) be sequences of real numbers such that a_n ≤ a_{n+1} ≤ b_{n+1} ≤ b_n for all n ∈ N. Must there exist a real number x such that a_n ≤ x ≤ b_n for all n ∈ N? Justify your answer.

(9)

27. Let G be the group of all 2×2 matrices with real entries with respect to matrix multiplication. Let G_1 be the smallest subgroup of G containing $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$, and G_2 be the smallest subgroup of G containing $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. Determine all elements of G_1 and find their orders. Determine all elements of G_2 and find their orders. Does there exist a one-to-one homomorphism from G_1 onto G_2 ? Justify. (15)

28. (a) Let p be a prime number and let \mathbf{Z} be the ring of integers. If an ideal J of \mathbf{Z} contains the set $p\mathbf{Z}$ properly, then show that $J = \mathbf{Z}$. (Here $p\mathbf{Z} = \{px : x \in \mathbf{Z}\}$.) (9)

(b) Consider the ring $R = \{ a + ib : a, b \in \mathbb{Z} \}$ with usual addition and multiplication. Find all invertible elements of R. (6) 29. (a) Suppose *E* is a non-empty subset of **R** which is bounded above, and let $\alpha = \sup E$. If *E* is closed, then show that $\alpha \in E$. If *E* is open, then show that $\alpha \notin E$. (9)

(6)

(b) Find all limit points of the set $E = \left\{ n + \frac{1}{2m} : n, m \in \mathbb{N} \right\}$.