## ELECTRONICS \& COMMUNICATION ENGINEERING

## ONE MARK QUESTIONS

1. The values of voltage $\left(\mathrm{V}_{\mathrm{D}}\right)$ across a tunnel-diode corresponding to peak and valley currents are $\mathrm{V}_{\mathrm{p}}$ and $V_{v}$ respectively. The range of tunnel-diode voltage $V_{D}$ for which the slope of its $I-V_{D}$ characteristics is negative would be
(a.) $\mathrm{V}_{\mathrm{D}}<0$
(b.) $0 \leq V_{D}<V_{p}$
(c.) $\mathrm{V}_{\mathrm{p}} \leq \mathrm{V}_{\mathrm{D}}<\mathrm{V}_{\mathrm{v}}$
(d.) $V_{D} \geq V_{v}$
2. The concentration of minority carriers in an extrinsic semiconductor under equilibrium is
(a.) directly prop ortional to the doping concentration
(b.)inversely proportional to the doping concentration
(c.) directly proportional to the intrinsic concentration
(d.)inversely proportional to the intrinsic concentration
3. Under low level injection assumption, the injected minority carrier current for an extrinsic semiconductor is essentially the
(a.) diffusion current
(b.)drift current
(c.) recombination current
(d.)induced current
4. The phenomenon known as "Early Effect" in a bipolar transistor refers to a reduction of the effective base-width caused by
(a.) electron-hole recombination at the base
(b.)the reverse biasing of the base-collector junction
(c.) the forward biasing of emitter-base junction
(d.)the early removal of stored base charge during saturation-to-cutoff switching
5. The input impedance $\left(\mathrm{Z}_{\mathrm{i}}\right)$ and the output impedance $\left(\mathrm{Z}_{0}\right)$ of an ideal trans-conductance (voltage controlled current source) amplifier are
(a.) $\mathrm{Z}_{\mathrm{i}}=0, \mathrm{Z}_{0}=0$
(b.) $\mathrm{Z}_{\mathrm{i}}=0, \mathrm{Z}_{0}=\infty$
(c.) $\mathrm{Z}_{\mathrm{i}}=\infty, \mathrm{Z}_{0}=0$
(d.) $\mathrm{Z}_{\mathrm{i}}=\infty, \mathrm{Z}_{0}=\infty$
6. An n-channel depletion MOSFET has following two points on its $\mathrm{I}_{\mathrm{D}}-\mathrm{V}_{\mathrm{GS}}$ curve:
7. $\mathrm{V}_{\mathrm{GS}}=0$ at $\mathrm{I}_{\mathrm{D}}=12 \mathrm{~mA}$ and
8. $\mathrm{V}_{\mathrm{GS}}=-6$ Volts at $\mathrm{Z}_{0}=\infty$

Which of the following Q-points will give the highest trans-conductance gain for small signals?
(a.) $V_{G S}=-6$ Volts
(b.) $V_{G S}=-3$ Volts
(c.) $\mathrm{V}_{\mathrm{GS}}=0$ Volts
(d.) $\mathrm{V}_{\mathrm{GS}}=3$ Volts
7. The number of product terms in the minimized sum-of- product expression obtained through the following K-map is (where, "d" denotes don't care states)

(a.) 2
(b.) 3
(c.) 4
(d.) 5
8. Let $x(t) \leftrightarrow X(j \omega)$ be Fourier Transform pair. The Fourier Transform of the signal $x(5 t-3)$ in terms of $X(j \omega)$ is given as
(a.) $\frac{1}{5} e^{-\frac{j 3 \omega}{5}} X\left(\frac{j \omega}{5}\right)$
(b.) $\frac{1}{5} e^{\frac{i 3 \omega}{5}} X\left(\frac{j \omega}{5}\right)$
(c.) $\frac{1}{5} e^{-j 3 \omega} X\left(\frac{j \omega}{5}\right)$
(d.) $\frac{1}{5} e^{j 3 \omega} X\left(\frac{j \omega}{5}\right)$
9. The Dirac delta function $\delta(t)$ is defined as
(a.) $\delta(t)=\left\{\begin{array}{cc}1 & t=0 \\ 0 & \text { otherwise }\end{array}\right.$
(b.) $\delta(t)=\left\{\begin{array}{lc}\infty & t=0 \\ 0 & \text { otherwise }\end{array}\right.$
(c.) $\delta(t)=\left\{\begin{array}{lc}1 & t=0 \\ 0 & \text { otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$
(d.) $\delta(t)=\left\{\begin{array}{cc}\infty & t=0 \\ 0 & \text { otherwise }\end{array}\right.$ and $\int_{-\infty}^{\infty} \delta(t) d t=1$
10. If the region of convergence of $x_{n}[n]+x_{2}[n]$ is $\frac{1}{3}<|z|<\frac{2}{3}$, then the region of convergence of $x_{1}[n]-x_{2}[n]$ includes
(a.) $\frac{1}{3}<|z|<3$
(b.) $\frac{2}{3}<|z|<3$
(c.) $\frac{3}{2}<|z|<3$
(d.) $\frac{1}{3}<|z|<\frac{2}{3}$
11. The open-loop transfer function of a unity-gain feedback control system is given by $G(s)=\frac{K}{(s+1)(s+2)}$

The gain margin of the system in dB is given by
(a.) 0
(b.) 1
(c.) 20
(d.) $\infty$
12. In the system shown below, $x(t)=(\sin t) u(t)$. It steady -state, the response $y(t)$ will be

(a.) $\frac{1}{\sqrt{2}} \sin \left(t-\frac{\pi}{4}\right)$
(b.) $\frac{1}{\sqrt{2}} \sin \left(t+\frac{\pi}{4}\right)$
(c.) $\frac{1}{\sqrt{2}} e^{t} \sin t$
(d.) $\sin t-\cos t$
13. The electric field of ah electromagnetic wave propagating in the positive z -direction is given by $E=\hat{a}_{x} \sin \left(\omega t-\beta_{z}\right)+\hat{a}_{y} \sin \left(\omega t-\beta_{z}+\pi / 2\right)$ The wave is
(a.) linearly polarized in the z-direction
(b.) elliptically polarized
(c.) left-hand circularly polarized
(d.)right-hand circularly polarized
14. A transmission line is feeding 1 Watt of power to a horn antenna having a gain of 10 dB . The antenna is matched to the transmission line. The total power radiated
(a.) 10 Watts
(b.) 1 Watt
(c.) 0.1 Watt
(d.)0.01 Watt
15. The rank of the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 1\end{array}\right]$ is
(a.) 0
(b.) 1
(c.) 2
(d.) 3
16. $\nabla \times \nabla \times P$, where P is a vector is equal to
(a.) $P \times \nabla \times P-\nabla^{2} P$
(b.) $\nabla^{2} P \times \nabla P(\nabla P)$
(c.) $\nabla^{2} P+\nabla \times P$
(d.) $\nabla(\nabla P)-\nabla^{2} P$
17. $\iint(\nabla \times P) d s$, Where P is a vector, is equal to
(a.) $\oint P \bullet d l$
(b.) $\oint \nabla \times \nabla \times p d l$
(c.) $\oint \nabla \times p d l$
(d.) $\iiint \nabla p d v$
18. A probability density function is of the form

$$
p(x)=K e^{-|x|}, x \in(-\infty, \infty)
$$

The value of $K$ is
(a.) 0.5
(b.) 1
(c.) $0.5 \alpha$
(d.) $\alpha$
19. A solution for the differential equation
$\dot{x}(t)+2 x(t)=\delta(t)$
with initial condition $\mathrm{x}(0-)=0$ is
(a.) $e^{-2 t} u(t)$
(b.) $e^{2 t} u(t)$
(c.) $e^{-t} u(t)$
(d.) $e^{t} u(t)$
20. A low-pass filter having a frequency response $H(j \omega)=A(\omega) e^{j \phi(\omega)}$ does not produce any phase distortion if
(a.) $A(\omega)=C \omega^{2}, \phi(\omega)=k \omega^{2}$
(b.) $A(\omega)=C \omega^{2}, \phi(\omega)=k \omega$
(c.) $A(\omega)=C \omega, \phi(\omega)=k \omega^{2}$
(d.) $A(\omega)=C, \phi(\omega)=k \omega^{-1}$

## TWO MARKS QUESTIONS

21. A two-port network is represented by ABCD parameters given by
$\left[\begin{array}{c}\mathrm{V}_{1} \\ \mathrm{I}_{1}\end{array}\right]=\left[\begin{array}{ll}\mathrm{A} & \mathrm{B} \\ \mathrm{C} & \mathrm{D}\end{array}\right]\left[\begin{array}{c}\mathrm{V}_{2} \\ -\mathrm{I}_{2}\end{array}\right]$
If port- 2 is terminated by $R_{L}$, the input impedance seen at port- 1 is given by
(a.) $\frac{A+B R_{L}}{C+D R_{L}}$
(b.) $\frac{A R_{L}+C}{B R_{L}+D}$
(c.) $\frac{D R_{L}+A}{B R_{L}+C}$
(d.) $\frac{B+A R_{L}}{D+C R_{L}}$
22. In the two port network shown in the figure below, $\mathrm{z}_{12}$ and $\mathrm{z}_{21}$ are, respectively

(a.) $\mathrm{r}_{\mathrm{e}}$ and $\beta \mathrm{r}_{0}$
(b.) 0 and $-\beta \mathrm{r}_{0}$
(c.) 0 and $\beta r_{0}$
(d.) $\mathrm{r}_{\mathrm{e}}$ and $-\beta \mathrm{r}_{0}$
23. The first and the last critical frequencies (singularities) of a driving point impedance function of a passive network having two kinds of elements, are a pole and a zero respectively. The above property will be satisfied by
(a.) RL network only
(b.)RC network only
(c.) LC network only
(d.) RC as well as RL networks
24. A 2 mH inductor with some initial current can be represented as shown below, where s is the Laplace Transform variable. The value of initial current is

(a.) 0.5 A
(b.) 2.0 A
(c.) 1.0 A
(d.) 0.0 A
25. In the figure shown below, assume that all the capacitors are initially uncharged. If $v_{i}(t)=10 u(t)$ Volts, $\mathrm{v}_{0}(\mathrm{t})$ is given by

(a.) $8 e^{-t 0.004}$ Volts
(b.) $8\left(1-e^{-t 0.004}\right)$ Volts
(c.) $8 u(t)$ Volts
(d.) 8 Volts
26. A negative resistance $\mathrm{R}_{\text {neg }}$ is connected to a passive network N having driving point impedance as shown below. For $Z_{2}$ (s) to be positive real,

(a.) $\mid \mathrm{R}_{\text {neg }} \leq \operatorname{ReZ}_{1}(\mathrm{j} \omega), \forall \omega$
(b.) $\left|\mathrm{R}_{\text {neg }}\right| \leq\left|\mathrm{Z}_{1}(\mathrm{j} \omega)\right|, \forall \omega$
(c.) $\mid \mathrm{R}_{\text {neg }} \leq \operatorname{ImZ}_{1}(\mathrm{j} \omega), \forall \omega$
(d.) $\left|\mathrm{R}_{\text {neg }}\right| \leq \angle \mathrm{Z}_{1}(\mathrm{j} \omega), \forall \omega$
27. In the circuit shown below, the switch was connected to position 1 at $\mathrm{t}<0$ and at t 0 . it is changed to position 2. Assume that the diode has zero voltage drop and a storage time $t_{s}$. For $0<t \leq t_{s}, V_{R}$ is given by (all in Volts)

(a.) $V_{R}=-5$
(b.) $\mathrm{V}_{\mathrm{R}}=+5$
(c.) $0 \leq \mathrm{V}_{\mathrm{R}}<5$
(d.) $-5<V_{R}<0$
28. The majority carriers in an n-type semiconductor have an average drift velocity v in a direction perpendicular to a uniform magnetic field $B$. The electric field $E$ induced due to Hall effect acts in the direction
(a.) $v \times B$
(b.) $\mathrm{B} x$
(c.) along $v$
(d.) opposite to $v$
29. Find the correct match between Group 1 and Group 2

Group 1
A. Varactor diode
B. PIN diode
C. Zener diode
D. Schottky diode

Group 2

1. Voltage reference
2. High-frequency switch
3. Tuned circuits
4. Current controlled attenuator

Codes:

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (a.) | 4 | 2 | 1 | 3 |
| (b.) | 2 | 4 | 1 | 3 |
| (c.) | 3 | 4 | 1 | 2 |
| (d.) | 1 | 3 | 2 | 4 |

30. A heavily doped n-typed semiconductor has the following data:

Hole-electron mobility ratio : 0.4
Doping concentration: $4.2 \times 10^{8}$ atoms $/ \mathrm{m}^{3}$
Intrinsic concentration: $1.5 \times 10^{8}$ atoms $/ \mathrm{m}^{3}$
The ratio of conductance of the n-type semiconductor to that of the intrinsic semiconductor of same material and at the same temperature is given by
(a.) 0.00005
(b.) 2,000
(c.) 10,000
(d.) 20,000
31. For the circuit shown in the following figure, the capacitor $C$ is initially uncharged. At $t 0$, the switch S is closed. The voltage $\mathrm{V}_{\mathrm{C}}$ across the capacitor at $\mathrm{t}=1$ millisecond is


In the figure shown above, the OP AMP is supplied with $\pm 15 \mathrm{~V}$.
(a.) 0 Volt
(b.) 6.3 Volts
(c.) 9.45 Volts
(d.) 10 Volts
32. For the circuit shown below, assume that the zener diode is ideal with a breakdown voltage of 6 volts. The waveform observed across R is

(a.)

(b.)

(c.)

(d.)


Common Data for Questions 33, 34, 35:
In the transistor amplifier circuit shown in the figure below, the transistor has the following parameters:
$\beta_{D C}=60, V_{B E}=0.7 V, h_{i e} \rightarrow \infty, g_{f e} \rightarrow \infty$
The capacitors $\mathrm{C}_{\mathrm{C}}$ can be assumed to be infinite.


In the figure above, the ground has been shown by the symbol $\nabla$
33. Under the DC conditions, the collector-to-emitter voltage drop is:
(a.) 4.8 Volts
(b.) 5.3 Volts
(c.) 6.0 Volts
(d.) 6.6 Volts
34. If $\beta_{\mathrm{DC}}$ is is increased by $10 \%$, the collector-to-emitter voltage drop:
(a.) increases by less than or equal to $10 \%$
(b.)decreases by less than or equal to $10 \%$
(c.) increases by more than $10 \%$
(d.)decreases by more than $10 \%$
35. The small-signal gain of the amplifier $\mathrm{v}_{\mathrm{c}} / \mathrm{v}_{\mathrm{s}}$ is:
(a.) -10
(b.) -5.3
(c.) 5.3
(d.) 10

## Common Data for Questions 36 \& 37:

A regulated power supply, shown in figure below, has an unregulated input (UR) of 15 Volts and generates a regulated output $\mathrm{V}_{\text {out }}$. Use the component values shown in the figure


In the figure above, the ground has been shown by the symbol $\nabla$
36. The power dissipation across the transistor Q1 shown in the figure is:
(a.) 4.8 Watts
(b.) 5.0 Watts
(c.) 5.4 Watts
(d.) 6.0 Watts
37. If the unregulated voltage increases by $20 \%$, the power dissipation across the transistor Q1:
(a.) increases by $20 \%$
(b.)increases by $50 \%$
(c.) remains unchanged
(d.)decreases by 20\%
38. A new Binary Coded Pentary (BCP) number system is proposed in which every digit of a base-5 number is represented by its corresponding 3-bit binary code. For example, the base- 5 number 24 will be represented by its BCP code 010100. In this numbering sy stem, the BCP code 100010011001 corresponds to the following number in base- S system
(a.) 423
(b.) 1324
(c.) 2201
(d.) 4231
39. An I/O peripheral device shown in the figure below is to be interfaced to an microprocessor. To select the I/O device in the I/O address range D4 H—D7 H, its 8085 chip-select $(\overline{\mathrm{CS}})$ should be connected to the output of the decoder shown in the figure

(a.) output 7
(b.)output 5
(c.) output 2
(d.)output 0
40. For the circuit shown in the figure below, two 4-bit parallel-in serial-out shift registers loaded with the data shown are used to feed the data to a full adder. Initially, all the flip-flops are in clear state. After applying two clock pulses, the outputs of the full adder should be

(a.) $\mathrm{S}=0 \mathrm{C}_{0}=0$
(b.) $S=0 C_{0}=1$
(c.) $\mathrm{S}=1 \mathrm{C}_{0}=0$
(d.) $\mathrm{S}=1 \mathrm{C}_{0}=1$
41. A 4-bit D/A converter is connected to a free-running 3-bit UP counter, as shown in the following figure. Which of the following waveforms will be observed at $\mathrm{V}_{0}$ ?


In the figure shown above, the ground has been shown by the symbol $\nabla$
(a.)

(b.)
(c.)

(d.)

42. Two D-flip-flops, as shown below, are to be connected as a synchronous counter that goes through the following $\mathrm{Q}_{1} \mathrm{Q}_{0}$ sequence
$00 \rightarrow 01 \rightarrow 11 \rightarrow 10 \rightarrow 00 \rightarrow \ldots$
The inputs $D_{0}$ and $D_{1}$ respectively should be connected as

(a.) $\bar{Q}_{1}$ and $\mathrm{Q}_{0}$
(b.) $\bar{Q}_{0}$ and $Q_{1}$
(c.) $\bar{Q}_{1} \mathrm{Q}_{0}$ and $\bar{Q}_{1} \mathrm{Q}_{0}$
(d.) $\bar{Q}_{1} \bar{Q}_{0}$ and $\mathrm{Q}_{1} \mathrm{Q}_{0}$
43. The point Pin the following figure is stuck-at-1. The output $f$ will be

(a.) $\overline{A B \bar{C}}$
(b.) $\bar{A}$
(c.) $A B \bar{C}$
(d.) A
44. Consider the function $\mathrm{f}(\mathrm{t})$ having Laplace transform
$F(s)=\frac{\omega_{0}}{s^{2}+\omega_{0}^{2}} \operatorname{Re}[s]>0$
The final value of $f(t)$ would be:
(a.) 0
(b.) 1
(c.) $-1 \leq f(\infty) \leq 1$
(d.) $\infty$
45. A signal $m(t)$ with bandwidth 500 Hz is first multiplied by a signal $g(t)$ where
$g(t) \sum_{k=-\infty}^{\infty}(-1)^{k} \delta\left(t-0.5 \times 10^{-4} k\right)$
The resulting signal is then passed through an ideal low pass filter with bandwidth 1 kHz . The output of the low pass filter would be
(a.) $\delta(t)$
(b.) $m(t)$
(c.) 0
(d.) $m(t) \delta(t)$
46. A uniformly distributed random variable X with probability density function

$$
f_{x}(x)=\frac{1}{10}(u(x+5)-u(x-5))
$$

Where $u($.$) is the unit step function is passed through a transformation given in the figure below. The$ probability density function of the transformed random variable Y would be

(a.) $f_{y}(y)=\frac{1}{5}(u(y+2.5)-u(y-2.5))$
(b.) $f_{y}(y)=0.5 \delta(y)+0.5 \delta(y-1)$
(c.) $f_{y}(y)=0.25 \delta(y+2.5)$

$$
+0.25 \delta(y-2.5)+0.5 \delta(y)
$$

(d.)

$$
\begin{aligned}
f_{y}(y)=0.25 \delta & (y+2.5)+0.25 \delta(y-2.5) \\
& +\frac{1}{10}(u(y+2.5)-u(y-25))
\end{aligned}
$$

47. A system with input $\mathrm{x}[\mathrm{n}]$ and output $\mathrm{y}[\mathrm{n}]$ is given as $y[n]=\left(\sin \frac{5}{6} \pi n\right) x(n)$. Then system is
(a.) Linear, stable and invertible
(b.)Non-linear, stable and non-invertible
(c.) Linear, stable and non-invertible
(d.)Linear, unstable and invertible
48. Consider two transfer functions
$G_{1}(s)=\frac{1}{s^{2}+a s+b}$ and
$G_{2}(s)=\frac{s}{s^{2}+a s+b}$
The 3-dB bandwidths of their frequency responses are, respectively
(a.) $\sqrt{a^{2}-4 b}, \sqrt{a^{2}+4 b}$
(b.) $\sqrt{a^{2}+4 b}, \sqrt{a^{2}-4 b}$
(c.) $\sqrt{a^{2}-4 b}, \sqrt{a^{2}-4 b}$
(d.) $\sqrt{a^{2}+4 b}, \sqrt{a^{2}+4 b}$
49. The unit-step response of a system starting from rest is given by $c(t)=1-e^{-2 t}$ for $t \geq 0$

The transfer function of the system is
(a.) $\frac{1}{1+2 s}$
(b.) $\frac{2}{2+s}$
(c.) $\frac{1}{2+s}$
(d.) $\frac{2 s}{1+2 s}$
50. The Nyquist plot of $G(j \omega) H(j \omega)$ for a closed loop control system, passed through ( $-1, \mathrm{j} 0$ ) point in the GH plane. The gain margin of the system in dB is equal to
(a.) infinite
(b.) greater than zero
(c.) less than zero
(d.) zero
51. The positive values of " $K$ " and "a" so that the system shown in the figure below oscillates at a frequency of $2 \mathrm{rad} / \mathrm{sec}$ respectively are

(a.) $1,0.75$
(b.) 2, 0.75
(c.) 1,1
(d.)2, 2
52. The unit impulse response of a system is $h(t) e^{-t}, t \geq 0$

For this system, the steady-state value of the output for unit step input is equal to
(a.) -1
(b.) 0
(c.) 1
(d.) $\infty$
53. The transfer function of a phase-lead compensator is given by $G_{e}(s) \frac{1+3 T s}{1+T s}$ where $\mathrm{T}>0$
The maximum phase-shift provided by such a compensator is
(a.) $\pi / 2$
(b.) $\pi / 3$
(c.) $\pi / 4$
(d.) $\pi / 6$
54. A linear system is described by the following state equation
$X(t) A X(t)+B U(t), A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
The state-transition matrix of the system is
(a.) $\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$
(b.) $\left[\begin{array}{cc}-\cos t & \sin t \\ -\sin t & -\cos t\end{array}\right]$
(c.) $\left[\begin{array}{ll}-\cos t & -\sin t \\ -\sin t & \cos t\end{array}\right]$
(d.) $\left[\begin{array}{ll}\cos t & -\sin t \\ \cos t & \sin t\end{array}\right]$

## Common Data for Questions 55 and 56:

Consider a unity-gain feedback control system whose open-loop transfer function is $G(s)=\frac{a s+1}{s^{2}}$
55. The value of "a" so that the system has a phase-margin equal to $\pi / 4$ is approximately equal to
(a.) 2.40
(b.) 1.40
(c.) 0.84
(d.) 0.74
56. With the value of " $a$ " set for phase-margin of $\pi / 4$, the value of unit-impulse response of the openloop system at $\mathrm{t}=1$ second is equal to
(a.) 3.40
(b.) 2.40
(c.) 1.84
(d.) 1.74
57. The minimum sampling frequency (in samples/sec) required to reconstruct the following signal from its samples without distortion
$x(t)=5\left(\frac{\sin 2 \pi 100 t}{\pi t}\right)^{3}+7\left(\frac{\sin 2 \pi 1000 t}{\pi t}\right)^{2}$ would be
(a.) $2 \times 10^{3}$
(b.) $4 \times 10^{3}$
(c.) $6 \times 10^{3}$
(d.) $8 \times 10^{3}$
58. The minimum step-size required for a Delta-Modulator operating at 32 K samples $/ \mathrm{sec}$ to track the signal (here $u(t)$ is the unit-step function)
$x(t)=125 t(u(t)-u(t-1))+(250-125 t)(u(t-1)-u(t-2))$ so that slope-overload is avoided, would be
(a.) $2^{-10}$
(b.) $2^{-8}$
(c.) $2^{-6}$
(d.) $2^{-4}$
59. A zero-mean white Gaussian noise is passed through an ideal lowpass filter of bandwidth 10 kHz . The output is then uniformly sampled with sampling period $\mathrm{t}_{\mathrm{s}}=0.03 \mathrm{msec}$. The samples so obtained would be
(a.) correlated
(b.) statistically independent
(c.) uncorrelated
(d.) orthogonal
60. A source generates three symbols with probabilities $0.25,0.25,0.50$ at a rate of 3000 symbols per second. Assuming independent generation of symbols, the most efficient source encoder would have average bit rate is
(a.) $6000 \mathrm{bits} / \mathrm{sec}$
(b.) $4500 \mathrm{bits} / \mathrm{sec}$
(c.) $3000 \mathrm{bits} / \mathrm{sec}$
(d.) 1500 bits/sec
61. The diagonal clipping in Amplitude Demodulation (using envelop detector) can be avoided if RC time-constant of the envelope detector satisfies the following condition, (here W is message bandwidth and $\omega$ is carrier frequency both in rad/sec)
(a.) $R C<\frac{1}{W}$
(b.) $R C>\frac{1}{W}$
(c.) $R C<\frac{1}{\omega}$
(d.) $R C>\frac{1}{\omega}$
62. In the following figure the minimum value of the constant " $C$ ", which is to be added to $y_{1}(t)$ such that $y_{1}(t)$ and $y_{2}(t)$ are different, is

range
$\left[\frac{-v}{2}, \frac{v}{2}\right]$
(a.) $\Delta$
(b.) $\frac{\Delta}{2}$
(c.) $\frac{\Delta^{2}}{12}$
(d.) $\frac{\Delta}{L}$
63. A message signal with bandwidth 10 kHz is Lower-Side B and SSB modulated with carrier frequency $\mathrm{f}_{\mathrm{cl}}=10^{6} \mathrm{~Hz}$. The resulting signal is then passed through a Narrow-Band Frequency Modulator with carrier frequency $\mathrm{f}_{\mathrm{c} 2}=10^{9} \mathrm{~Hz}$.
The bandwidth of the output would be
(a.) $4 \times 10^{4} \mathrm{~Hz}$
(b.) $2 \times 10^{6} \mathrm{~Hz}$
(c.) $2 \times 10^{9} \mathrm{~Hz}$
(d.) $2 \times 10^{10} \mathrm{~Hz}$

## Common Data for Questions 64, 65:

Let $\mathrm{g}(\mathrm{t})=\mathrm{p}(\mathrm{t})^{*} \mathrm{p}(\mathrm{t})$, where $*$ denotes convolution and $\mathrm{p}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-1)$ with $\mathrm{u}(\mathrm{t})$ being the unit step function
64. The impulse response of filter matched to the signal $s(t)=g(t)-\delta(t-2) * g(t)$ is given as:
(a.) $\mathrm{s}(1-\mathrm{t})$
(b.) $-s(1-\mathrm{t})$
(c.) $-\mathrm{s}(\mathrm{t})$
(d.) $\mathrm{s}(\mathrm{t})$
65. An Amplitude Modulated signal is given as
$X_{A M}(t)=100(p(t)+0.5 g(t)) \cos \omega_{c} t$
in the interval $0 \leq \mathrm{t} \leq 1$. One set of possible values of the modulating signal and modulation index would be
(a.) t, 0.5
(b.)t, 1.0
(c.) t, 2.0
(d.) $t^{2}, 0.5$

## Common Data for Questions 66 \& 67:

The following two questions refer to wide sense stationary stochastic processes
66. It is desired to generate a stochastic process (as voltage process) with power spectral density $S(\omega)=\frac{16}{16+\omega^{2}}$
by driving a Linear-Time-Invariant system by zero mean white noise (as voltage process) with power spectral density being constant equal to 1 . The sy stem which can perform the desired task could be
(a.) first order low pass R-L filter
(b.)first order high pass R-C filter
(c.) tuned L-C filter
(d.)series R-L-C filter
67. The parameters of the system obtained in Q .78 would be
(a.) first order R-L low pass filter would have $\mathrm{R}=4 \Omega \mathrm{~L}=1 \mathrm{H}$
(b.) first order R-C high pass filter would have $\mathrm{R}=4 \Omega \mathrm{C}=0.25 \mathrm{~F}$
(c.) tuned L-C filter would have $\mathrm{L}=4 \mathrm{HC}=4 \mathrm{~F}$
(d.) series R-L-C low pass filter would have $R=1 \Omega, L 4 H, C=4 F$

## Common Data for Questions 68 \& 69:

Consider the following Amp litude Modulated (AM) signal, where $\mathrm{f}_{\mathrm{m}}<B$ :
$\mathrm{x}_{\mathrm{AM}}(\mathrm{t})=10\left(1+0.5 \sin 2 \pi \mathrm{f}_{\mathrm{m}} \mathrm{t}\right) \cos 2 \pi \mathrm{f}_{\mathrm{c}} \mathrm{t}$
68. The average side-band power for the AM signal given above is
(a.) 25
(b.) 12.5
(c.) 6.25
(d.)3.125
69. The AM signal gets added to a noise with Power Spectral Density $\mathrm{S}_{\mathrm{n}}(\mathrm{f})$ given in the figure below. The ratio of average sideb and power to mean noise power would be:

(a.) $\frac{25}{8 N_{0} B}$
(b.) $\frac{25}{4 N_{0} B}$
(c.) $\frac{25}{2 N_{0} B}$
(d.) $\frac{25}{N_{0} B}$
70. A medium of relative permittivity $\varepsilon_{r 2}=2$ forms an interface with free-space. A point source of electromagnetic energy is located in the medium at a depth of 1 meter from the interface. Due to the total internal reflection, the transmitted beam has a circular cross-section over the interface. The area of the beam cross-section at the interface is given by
(a.) $2 \pi \mathrm{~m}^{2}$
(b.) $\pi^{2} m^{2}$
(c.) $\pi / 2 \mathrm{~m}^{2}$
(d.) $\pi \mathrm{m}^{2}$
71. A medium is divided into regions I and II about $x=0$ plane, as shown in the figure below. An electromagnetic wave with electric field $\mathrm{E}_{1}=4 \hat{\mathrm{a}}_{\mathrm{x}}+3 \hat{\mathrm{a}}_{\mathrm{y}}+5 \hat{\mathrm{a}}_{\mathrm{z}}$ is incident normally on the interface from region-I. The electric field $\mathrm{E}_{2}$ in region-II at the interface is

(a.) $E_{2}=E_{1}$
(b.) $4 \hat{a}_{\mathrm{x}}+0.75 \hat{a}_{\mathrm{y}}-1.25 \hat{\mathrm{a}}_{\mathrm{z}}$
(c.) $3 \hat{\mathrm{a}}_{\mathrm{x}}+3 \hat{\mathrm{a}}_{\mathrm{y}}+5 \hat{\mathrm{a}}_{\mathrm{z}}$
(d.) $-3 \hat{\mathrm{a}}_{\mathrm{x}}+3 \hat{\mathrm{a}}_{\mathrm{y}}+5 \hat{\mathrm{a}}_{\mathrm{z}}$
72. When a plane wave traveling in free-space is incident normally on a medium having $\varepsilon_{\mathrm{r}}=4.0$, the fraction of power transmitted into the medium is given by
(a.) $8 / 9$
(b.) $1 / 2$
(c.) $1 / 3$
(d.)5/6
73. A rectangular waveguide having $\mathrm{TE}_{10}$ mode as dominant mode is having a cutoff frequency of 18GHz for the $\mathrm{TE}_{30}$ mode. The inner broad-wall dimension of the rectangular waveguide is
(a.) $5 / 3 \mathrm{cms}$
(b.) 5 cms
(c.) $5 / 2 \mathrm{cms}$
(d.) 10 cms
74. A mast antenna consisting of a 50 meter long vertical conductor operates over a perfectly conducting ground plane. It is base-fed at a frequency of 600 kHz . The radiation resistance of the antenna in Ohms is
(a.) $\frac{2 \pi^{2}}{5}$
(b.) $\frac{\pi^{2}}{5}$
(c.) $\frac{4 \pi^{2}}{5}$
(d.) $20 \pi^{2}$
75. In a microwave test bench, why is the microwave signal amplitude modulated at 1 kHz ?
(a.) To increase the sensitivity of measurement
(b.)To transmit the signal to a far-off place
(c.) To study amp litude modulation
(d.)Because crystal detector fails at microwave frequencies

## Common Data for Questions 76 \& 77:

A 30-Volts battery with zero source resistance is connected to a coaxial line of characteristic impedance of 50 Ohms at $\mathrm{t}=0$ second and terminated in an unknown resistive load. The line length is such that it takes $400 \mu \mathrm{~s}$ for an electromagnetic wave to travel from source end to load end and vice-versa. At $\mathrm{t}=400 \mu \mathrm{~s}$, the voltage at the load end is found to be 40 Volts.
76. The load resistance is
(a.) 25 Ohms
(b.) 50 Ohms
(c.) 75 Ohms
(d.) 100 Ohms
77. The steady-state current through the load resistance is
(a.) 1.2 Amps
(b.) 0.3 Amps
(c.) 0.6 Amps
(d.) 0.4 Amps
78. Following is the segment of a 8085 assembly language program:

$$
\begin{aligned}
& \text { LXI SP, EFFFH } \\
& \text { CALL 3000H } \\
& \text { LXIH, 3CF4H } \\
& \text { PUSH PSW } \\
& \text { SPHL } \\
& \text { POP PSW } \\
& \text { RET }
\end{aligned}
$$

3000H: LXIH, 3CF4H

On completion of RET execution, the contents of SP is
(a.) 3 CFOH
(b.) 3 CF 8 H
(c.) EFFD H
(d.)EFFF H
79. The eigenvalues and the corresponding eigenvectors of a $2 \times 2$ matrix are given by
$\lambda_{1}=8$

$$
v_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

$\lambda_{2}=4$

$$
v_{2}=\left[\begin{array}{l}
1 \\
-1
\end{array}\right]
$$

The matrix is
(a.) $\left[\begin{array}{ll}6 & 2 \\ 2 & 6\end{array}\right]$
(b.) $\left[\begin{array}{ll}4 & 6 \\ 6 & 4\end{array}\right]$
(c.) $\left[\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}\right]$
(d.) $\left[\begin{array}{ll}4 & 8 \\ 8 & 4\end{array}\right]$
80. For the function of a complex variable $W=\operatorname{In} Z$ (where, $W=u+j v$ and $Z=x+j y$ ), the $u=$ constant lines get mapped in Z-plane as
(a.) set of radial straight lines
(b.) set of concentric circles
(c.) set of confocal hyperbolas
(d.)set of confocal ellipses
81. The value of the contour integral $\int_{k-j=2} \frac{1}{z^{2}+4} d z$ in positive sense is
(a.) $j \pi / 2$
(b.) $-\pi / 2$
(c.) $-j \pi / 2$
(d.) $\pi / 2$
82. The integral $\int_{0}^{\pi} \sin ^{3} \theta d \theta$ is given by
(a.) $1 / 2$
(b.) $2 / 3$
(c.) $4 / 3$
(d.) $8 / 3$
83. Three companies $\mathrm{X}, \mathrm{Y}$ and Z supply computers to a university. The percentage of computers supplied by them and the probability of those being defective are tabulated below


Given that a computer is defective, the probability that it was supplied by Y is
(a.) 0.1
(b.) 0.2
(c.) 0.3
(d.) 0.4
84. For the matrix $\left[\begin{array}{ll}4 & 2 \\ 2 & 4\end{array}\right]$ the eigenvalue corresponding to the eigenvector $\left[\begin{array}{l}101 \\ 101\end{array}\right]$ is
(a.) 2
(b.) 4
(c.) 6
(d.) 8
85. For the differential equation $\frac{d^{2} y}{d x^{2}}+k^{2} y=0$ the boundary conditions are

1. $\mathrm{y}=0$ for $\mathrm{x}=0$ and
2. $\mathrm{y}=0$ for $\mathrm{x}=\mathrm{a}$

The form of non-zero solutions of $y$ (where $m$ varies over all integers) are
(a.) $y=\sum_{m} A_{m} \sin \frac{m \pi x}{a}$
(b.) $y=\sum_{m} A_{m} \cos \frac{m \pi x}{a}$
(c.) $y=\sum_{m} A_{m} x^{\frac{m \pi}{a}}$
(d.) $y=\sum_{m} A_{m} e^{-\frac{m \pi}{a}}$
86. As $x$ increased from $-\infty$ to $\infty$, the function
$f(x)=\frac{e^{x}}{1+e^{x}}$
(a.) monotonically increases
(b.)monotonically decreases
(c.) increases to a maximum value and then decreases
(d.)decreases to a minimum value and then increases

