## ASI SUBJECT CT6 - STATISTICAL MODELS

June 2005 Examinations - solutions

## Solution 1.

(i) We obtain the following table of premiums for the next three years:

|  |  |  |  |  |  | Smallest loss <br> for which the <br> claim will be |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Current <br> Level | Claim |  |  | No Claim |  | made |  |
|  | Year 1 | Year 2 | Year 3 | Year 1 | Year 2 | Year 3 |  |
| $0 \%$ | 100 | 85 | 70 | 85 | 70 | 50 | 50 |
| $15 \%$ | 100 | 85 | 70 | 70 | 50 | 50 | 85 |
| $30 \%$ | 85 | 70 | 50 | 50 | 50 | 50 | 55 |
| $50 \%$ | 85 | 70 | 50 | 50 | 50 | 50 | 55 |

(ii) $0 \%$ level: $\mathrm{P}($ Cost $>50)=\mathrm{e}^{-50 / 500}=0.905$
$15 \%$ level: $\mathrm{P}($ Cost $>85)=\mathrm{e}^{-85 / 500}=0.844$
$30 \%$ and $50 \%$ level: $\mathrm{P}($ Cost $>55)=\mathrm{e}^{-55 / 500}=0.896$

## Solution 2.

(i) Let $x_{1}, x_{2}, x_{3}$ be the observed claims. The Bayesian estimate under quadratic loss is the posterior mean. We first find the posterior distribution of $\theta$. The posterior density of $\theta$ is:

$$
\begin{aligned}
f(\theta \mid x) & \left.\propto \exp \left(\frac{-1}{2 \sigma_{1}^{2}} \sum_{j=1}^{n}\left(x_{j}-\theta\right)^{2}-\frac{1}{2 \sigma_{2}^{2}}(\theta-\mu)^{2}\right)\right) \\
& \propto \exp \left(\frac{-1}{2}\left\{\left(\frac{n}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}} \theta^{2}-2 \theta\left(\frac{\mu}{\sigma_{2}^{2}}+\frac{n \bar{x}}{\sigma_{1}^{2}}\right)\right\}\right)\right.
\end{aligned}
$$

The posterior mean is thus:
$\frac{\frac{n \bar{x}}{\sigma_{1}^{2}}+\frac{\mu}{\sigma_{2}^{2}}}{\frac{n}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}}=\frac{\frac{n}{\sigma_{1}^{2}}}{\frac{n}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}} \bar{x}+\frac{\frac{1}{\sigma_{2}^{2}}}{\frac{n}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}} \mu$
Using the values given:
$n=3, \quad \sigma_{1}^{2}=16, \quad \sigma_{2}^{2}=49, \quad \mu=100$
we obtain:
$\frac{\frac{3}{16}}{\frac{3}{16}+\frac{1}{49}} \bar{x}+\frac{\frac{1}{49}}{\frac{3}{16}+\frac{1}{49}} 100$

This is of the form $Z \bar{x}+(1-Z) 100$ where 100 is the prior mean for $\theta$.
(ii) The credibility factor Z is $\frac{\frac{3}{16}}{\frac{3}{16}+\frac{1}{49}}=0.9018$.

If $\bar{x}=110$, then the credibility premium is 109.02 .
(iii) If the variance of 16 is decreased, then the value of $Z$ would increase, and the credibility estimate would move closer to the past data. This makes sense, since
decreasing this variance means that the claim amounts within each risk are less variable, and so we should put relatively more weight on past data.
[1]
[Total 6]

## Solution 3.

Without policy excess, the mean and variance of the aggregate claims, $S$, are:

$$
E(S)=200 \times 500=1,00,000
$$

$$
E(X)=\frac{\lambda}{a-1}
$$

$$
V(X)=\frac{\alpha \lambda^{2}}{(\alpha-1)^{2}(\alpha-2)}
$$

$$
\frac{V(X}{(E(X))^{2}}=\frac{\alpha}{\alpha-2}=\frac{(1500)^{2}}{(500)^{2}}=9
$$

$$
\alpha=2.25
$$

$$
\lambda=(2.25-1) \times 500=625
$$

$$
X^{\prime}=\left\{\begin{array}{l}
0 \text { if } X<=100 \\
X-100 \text { otherwise }
\end{array}\right.
$$

$$
\therefore E\left(X^{\prime}\right)=\int_{100}^{\infty}(x-100) \frac{\alpha \lambda^{\alpha}}{(\lambda+x)^{\alpha+1}} d x
$$

$$
=\frac{\lambda^{\alpha}}{(\alpha-1)(\lambda+100)^{\alpha-1}}=415.33404
$$

$E\left(S^{\prime}\right)=415.33 \times 200=83,066.81$
$\% \quad$ reduction $=\frac{100,000-83,066.81}{100,000}=16.93 \%$

## Solution 4.

(i) The assumptions for the inflation adjusted chain ladder method are:

- The first accident year is fully run-off.
- For each accident year, the amount of claims paid, in real terms, in each development year is a constant proportion of the total claims, in real terms, from that accident year.
- Explicit allowance for past inflation
- Explicit allowance for future inflation
(ii) We can derive the incremental claims from the cumulative claims as under:

|  | Development year |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Accident year | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| $\mathbf{2 0 0 1}$ | 2,047 | 815 | 355 | 268 |
| $\mathbf{2 0 0 2}$ | 2,471 | 1,257 | 190 |  |
| $\mathbf{2 0 0 3}$ | 2,388 | 1,438 |  |  |
| $\mathbf{2 0 0 4}$ | 2,580 |  |  |  |

The inflation adjusted claims are:

|  | Development year |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Accident year | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| $\mathbf{2 0 0 1}$ | $2,724.56$ | 986.15 | 390.50 | 268.00 |
| $\mathbf{2 0 0 2}$ | $2,989.91$ | $1,382.70$ | 190.00 |  |
| $\mathbf{2 0 0 3}$ | $2,626.80$ | $1,438.00$ |  |  |
| $\mathbf{2 0 0 4}$ | $2,580.00$ |  |  |  |

The inflation adjusted cumulative claims are:

|  | Development year |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Accident year | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ |
| $\mathbf{2 0 0 1}$ | $2,724.56$ | $3,710.71$ | $4,101.21$ | $4,369.21$ |
| $\mathbf{2 0 0 2}$ | $2,989.91$ | $4,372.61$ | $4,562.61$ |  |
| $\mathbf{2 0 0 3}$ | $2,626.80$ | $4,064.80$ |  |  |
| $\mathbf{2 0 0 4}$ | $2,580.00$ |  |  |  |

The development factors are:

| Development year | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| Development Factor | 1.456388 | 1.071815 | 1.065347 |

The estimated outstanding claims for 2004 are
$=2,580 * 1.456388 * 1.071815 * 1.065347-2,580$
= Rs1,710.49.
[2]
[Total 8]

## Solution 5.

(i) The total claims from a portfolio are given by:
$S=X_{1}+X_{2}+\ldots+X_{n}$
where n is the total number of fixed policies and $X_{i}$ is the total claim amount from the ith policy. We assume that the $X_{i}$ are independent but not necessarily identically distributed.
(ii) Since N has a negative binomial distribution with parameters $k=3$ and $p=0.9$ we have:
$P(N=n)=\binom{n+2}{n}(0.9)^{3}(0.1)^{n}$
and thus
$\frac{P(N=n)}{P(N=n-1)}=0.1 \times\binom{ n+2}{n}\binom{n+1}{n-1}=0.1 \frac{(n+2)((n+1)}{(n+1) n}=0.1+\frac{0.2}{n}$
Thus the relationship holds with $a=0.1$ and $b=0.2$.
(iii) By Recursive method

The recursive formula states that:

$$
P(S=s)=\sum_{x=1}^{s}\left(a+\frac{b x}{s}\right) P(X=x) P(S=s-x), \quad s \geq 1
$$

and
[1]
$P(S=0)=P(N=0)$

Working in units of 500 we have:

$$
\begin{aligned}
P(S=0) & =P(N=0)=0.9^{3}=0.729 \\
P(S=1) & =0.1\left(1+\frac{2 \times 1}{1}\right) P(X=1) P(S=0)=0.1 \times 3 \times 0.5 \times 0.729 \\
& =0.10935
\end{aligned}
$$

$$
\begin{aligned}
P(S=2) & =0.1\left(1+\frac{2 \times 1}{2}\right) P(X=1) P(S=1)+0.1\left(1+\frac{2 \times 2}{2}\right) P(X=2) P(S=0) \\
& =0.06561 \\
P(S=3) & =0.1\left(1+\frac{2 \times 1}{3}\right) P(X=1) P(S=2)+0.1\left(1+\frac{2 \times 2}{3}\right) P(X=2) P(S=1) \\
& =0.01185 \quad(\sin \mathrm{ce} \quad P(X=3)=0) \\
P(S=4) & =0.1\left(1+\frac{2 \times 1}{4}\right) P(X=1) P(S=3)+0.1\left(1+\frac{2 \times 2}{4}\right) P(X=2) P(S=2) \\
& +0.1\left(1+\frac{2 \times 4}{4}\right) P(X=4) P(S=0) \\
& =0.05884 \quad(\sin \mathrm{ce} \quad P(X=3)=0)
\end{aligned}
$$

Hence the probability that the aggregate claim amount is less than or equal to Rs2,000 is:

$$
P(S \leq 4)=0.729+0.10935+0.06561+0.01185+0.05884=0.97465
$$

## Solution 6.

Let X be the gross claim amount.
For 8 claims, $\mathrm{X}<1,000$
For 19 claims, $\sum_{i=1}^{19} x_{i}=66,666+19 \times 1,000=85,666$
For 13 claims, $X>21,000$

$$
\begin{aligned}
& P(X<1000)=1-e^{-1,000 \lambda} \\
& P(X>21000)=e^{-21,000 \lambda}
\end{aligned}
$$

Likelihood function is:
$\left(\prod_{i=1}^{19} \lambda e^{-\lambda x_{i}}\right)\left(1-e^{-1,000 \lambda}\right)^{8}\left(e^{-21,000 \lambda}\right)^{13}$
The logLikelihood function is therefore:

$$
\begin{aligned}
& 19 \log \lambda-\lambda \sum_{i=1}^{19} x_{i}+8 \log \left(1-e^{-1,000 \lambda}\right)-13 \times 21,000 \lambda \\
& =19 \log \lambda-(85,666+273,000) \lambda+8 \log \left(1-e^{-1,000 \lambda}\right) \\
& =19 \log \lambda-358,666 \lambda+8 \log \left(1-e^{-1,000 \lambda}\right)
\end{aligned}
$$

7 (i) Let the first claim amount be $D_{1} . \mathrm{E}\left(D_{1}\right)=(5,000+15,000) / 2=10,000$.
Time-to first claim, $T_{1}$, has the exponential distribution with mean 1/0.4.
The surplus amount at time $T_{1}$ is $10,000+1.25$.(0.4) $T_{1} .10,000-D_{1}$.
Probability of ruin at first claim

$$
\begin{align*}
& =\mathrm{P}\left(10,000+12,500(0.4) T_{1}-D_{1}<0\right) \\
& =\mathrm{P}\left(10,000+12,500(0.4) T_{1}-15,000<0\right) \cdot \mathrm{P}\left(D_{1}=15,000\right) \\
& \quad \quad+\mathrm{P}\left(10,000+12,500(0.4) T_{1}-5,000<0\right) \cdot \mathrm{P}\left(D_{1}=5,000\right) \\
& \\
& =\mathrm{P}\left(10,000+12,500(0.4) T_{1}-15,000<0\right) / 2+0  \tag{2}\\
& =\mathrm{P}\left((0.4) T_{1}<0.4\right) / 2=\left(1-\mathrm{e}^{-0.4}\right) / 2=0.16484
\end{align*}
$$

(ii) Let the second claim amount be $D_{2} . \mathrm{E}\left(D_{2}\right)=\mathrm{E}\left(D_{1}\right)=10,000$.

Time-to second claim, $T_{2}$, has the gamma distribution with scale parameter $\lambda$ and shape parameter 2.

The surplus amount at time $T_{2}$ is $10,000+1.25$.(0.4) $T_{2} .10,000-D_{1}-D_{2}$. Probability of ruin at second claim

$$
\begin{align*}
= & \mathrm{P}\left(10,000+1 \cdot 25 \cdot(0.4) T_{2} \cdot 10,000-D_{1}-D_{2}<0\right) \\
= & \mathrm{P}\left(10,000+1.25 \cdot(0.4) T_{2} \cdot 10,000-10,000<0\right) \cdot \mathrm{P}\left(D_{1}=D_{2}=5,000\right) \\
& +\mathrm{P}\left(10,000+1.25 \cdot(0.4) T_{2} \cdot 10,000-30,000<0\right) \cdot \mathrm{P}\left(D_{1}=D_{2}=15,000\right) \\
& +\mathrm{P}\left(10,000+1.25 \cdot(0.4) T_{2} \cdot 10,000-20,000<0\right) \cdot \mathrm{P}\left(D_{1}=5,000, D_{2}=15,000\right) \\
& +\mathrm{P}\left(10,000+1.25 .(0.4) T_{2} \cdot 10,000-20,000<0\right) \cdot \mathrm{P}\left(D_{1}=15,000, D_{2}=5,000\right) \\
= & 0+\mathrm{P}\left((0.4) T_{2}<1.6\right) / 4+\mathrm{P}\left((0.4) T_{2}<0.8\right) / 4+\mathrm{P}\left((0.4) T_{2}<0.8\right) / 4 \\
= & \left(1-2.6 \mathrm{e}^{-1.6}\right) / 4+\left(1-1.8 \mathrm{e}^{-0.8}\right) / 2=0.21437 . \tag{2}
\end{align*}
$$

(iii) It is clear from part (i) that even if there is one claim of size Rs. 15,000 before one year, ruin will take place. Therefore, all claims occurring before one year must be of size Rs. 5,000.

If there are two or fewer claims (of size Rs. 5,000 ) before one year, surplus will still be positive. However, if there are three or more claims occurring before one year, then ruin will occur even if all the claims have size Rs. 5,000 . This is because the initial surplus will be spent on paying out the first two claims while there would not be sufficient accumulation of premium to pay out the third.

Therefore, the probability that ruin does not occur before one year is

$$
\mathrm{P}(\text { No claims })+\mathrm{P}(1 \text { claim of size Rs. } 5,000)+\mathrm{P}(2 \text { claims of size Rs. } 5,000)
$$

$$
\begin{equation*}
=\mathrm{e}^{-0.4}\left[1+(0.4)(1 / 2)+\left(0.4^{2} / 2\right)(1 / 4)\right]=0.81779 . \tag{2}
\end{equation*}
$$

## 8 (i)

$d_{1} 100$ policies premium Rs. 850 per annum
$d_{2} \quad 150$ policies premium Rs. 810 per annum
$d_{3} \quad 200$ policies premium Rs. 790 per annum
$\theta_{1} \quad$ Intensity $I_{1}$ claim costs Rs. 400 per policy per annum
$\theta_{2}$ Intensity $I_{2}$ claim costs Rs. 450 per policy per annum
$\theta_{3}$ Intensity $I_{3}$ claim costs Rs. 570 per policy per annum
$\theta_{4}$ Intensity $I_{4}$ claim costs Rs. 600 per policy per annum

Figures in Rs.Lakhs

| Strategy | $d_{1}$ | $d_{2}$ | $d_{3}$ |
| :--- | :--- | :--- | :--- |
| Total premiums | 850 | 1,215 | 1,580 |
| Fixed expenses | 150 | 150 | 150 |
| Per policy expenses | 180 | 270 | 360 |
| Premium less expenses | 520 | 795 | 1,070 |

Hence annual profits (Rs.lakhs):

|  | $\theta_{1}$ | $\theta_{2}$ | $\theta_{3}$ | $\theta_{4}$ |
| :---: | :---: | :---: | :---: | :---: |
| $d_{1}$ | 120 | 70 | -50 | -80 |
| $d_{2}$ | 195 | 120 | -60 | -105 |
| $d_{3}$ | 270 | 170 | -70 | -130 |

Minimax $=$ minimise maximum loss
$d_{1} \quad 80 \quad \leftarrow$ choose $d_{1}$, set premiums at Rs. 850 per annum
$d_{2} \quad 105$
$d_{3} \quad 130$
(ii) Bayes criterion

$$
\begin{aligned}
& d_{1}=0.1 \times 120+0.4 \times 70-0.3 \times 50-0.2 \times 80=9 \\
& d_{2}=0.1 \times 195+0.4 \times 120-0.3 \times 60-0.2 \times 105=28.5 \\
& d_{3}=0.1 \times 270+0.4 \times 170-0.3 \times 70-0.2 \times 130=48 \leftarrow \text { choose } d_{3}
\end{aligned}
$$

$9 \quad X \sim N\left(\mu, 100^{2}\right), \mu \sim N\left(500,20^{2}\right)$
(i) $\quad P(\mu>535)=P\left(Z>\frac{535-500}{20}=175\right)$

$$
\begin{equation*}
=1-0.960=0.040 \tag{1}
\end{equation*}
$$

(ii) $n=10, \bar{x}=535$
$\mu \mid \bar{x} \sim N\left(\mu_{*}, \sigma_{*}{ }^{2}\right)$
$\mu_{*}=\frac{\frac{10(535)}{100^{2}}+\frac{500}{20^{2}}}{\frac{10}{100^{2}}+\frac{1}{20^{2}}}=\frac{0.001(535)+0.0025(500)}{0.0035}$

$$
\begin{equation*}
=510 \tag{1}
\end{equation*}
$$

$$
\sigma_{*}^{2}=\frac{1}{0.0035}=16.9^{2}
$$

$$
\begin{equation*}
\therefore \mu \mid \bar{x} \sim N\left(510,16.9^{2}\right) \tag{1}
\end{equation*}
$$

(iii) $P(\mu>535 \mid \bar{x})=P\left(Z>\frac{535-510}{16.9}=1.48\right)$

$$
\begin{equation*}
=1-0.934=0.07 \tag{1}
\end{equation*}
$$

Since $\bar{x}>$ prior mean, the posterior probability in (ii) is larger than the prior one in (i).

10 (i) If $Y$ has a Poisson distribution with mean $\mu$, then

$$
f(y, \mu)=e^{-\mu} \mu^{y} / y!=\exp \left(\frac{y \log \mu-\mu}{1}-\log y!\right)
$$

which is of exponential family form.
The link function is $g(\mu)=\log (\mu)$.
The linear predictor is $\eta=\alpha_{i}$.
So this is a generalised linear model.
(ii) The likelihood is

$$
\prod_{i=1}^{3} \prod_{j=1}^{m} \frac{e^{-\mu_{i j}} \mu_{i j}^{y_{i j}}}{y_{i j}!}
$$

so the log-likelihood is

$$
\sum_{i=1}^{3} \sum_{j=1}^{m}\left(-\mu_{i j}+y_{i j} \log \left(\mu_{i j}\right)-\log \left(y_{i j}!\right)\right)
$$

i.e., in terms of $\alpha_{i}$ 's, writing $y_{i+}$ for the sum of the observations in the $i$ th group, the log-likelihood is

$$
\begin{equation*}
l\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)=-\sum_{i=1}^{3} m e^{\alpha_{i}}+\sum_{i=1}^{3} y_{i+} \alpha_{i}+\text { constant } . \tag{2}
\end{equation*}
$$

Differentiating,

$$
\frac{\partial l}{\partial \alpha_{i}}=-m e^{\alpha_{i}}+y_{i+},
$$

so the maximum likelihood estimator of $\alpha_{i}$ is

$$
\begin{equation*}
\hat{\alpha}_{i}=\log \left(y_{i+} / \mathrm{m}\right) . \tag{2}
\end{equation*}
$$

(iii) Comparing models 2 and 3:

There are 60 observations altogether.
Model 3 has one parameter estimate, and so has degrees of freedom 59.
Model 2 has degrees of freedom 58.

The drop in deviance in going from model 3 to model 2 is $72.53-61.64=$ 10.89.

The corresponding drop in degrees of freedom is $59-58=1$.
So to test for a significant improvement, compare 10.89 to a $\chi_{1}^{2}$.

The upper $5 \%$ point of $\chi_{1}^{2}$ is 3.841 , the upper $1 \%$ point is 6.635 , this is a significant improvement. We prefer model 2 to model 3 .

Comparing models 2 and 1 :
Model 1 has degrees of freedom 57.
The drop in deviance is $61.64-60.40=1.24$, and this should be compared to $\chi_{1}^{2}$.

It is not significant; do not prefer model 1 to model 2.
(iv) Interpretation of models:

Model 3 says that there is no difference in the average number of claims for the three age groups.

Model 2 says that there is no difference in the average number of claims between age groups 1 and 2 , but that the third age group may be different.

Model 1 gives the possibility of different average number of claims for each age group.
11. (i) In terms of the backwards shift operator we have

$$
\left(1+2 \alpha B-\alpha^{2} B^{2}\right) Y=Z
$$

We must find the values of $\alpha$ such that the roots of the polynomial $1+2 \alpha x-\alpha^{2} x^{2}$ lie outside the unit circle.

The roots are $\frac{1}{\alpha}(1 \pm \sqrt{2})$, so we require that $\frac{\sqrt{2}+1}{|\alpha|}>1$ and $\frac{\sqrt{2}-1}{|\alpha|}>1$, in other words that $|\alpha|<\sqrt{2}-1$.
(ii) $Y_{t}=-2 \alpha Y_{t-1}+\alpha^{2} Y_{t-2}+Z_{t}$
$\operatorname{Cov}\left[Y_{t}, Y_{t}\right]=\gamma_{0}=-2 \alpha \gamma_{1}+\alpha^{2} \gamma_{2}+\sigma^{2}$
$\operatorname{Cov}\left[Y_{t}, Y_{t-1}\right]=\gamma_{1}=-2 \alpha \gamma_{0}+\alpha^{2} \gamma_{1}$
$\operatorname{Cov}\left[Y_{t}, Y_{t-2}\right]=\gamma_{2}=-2 \alpha \gamma_{1}+\alpha^{2} \gamma_{0}$
From (2); $\gamma_{1}=-\frac{2 \alpha \gamma_{0}}{1-\alpha^{2}}$
Substitute for $\gamma_{1}$ from (4) into (3)

$$
\begin{equation*}
\gamma_{2}=2 \alpha \cdot \frac{2 \alpha \gamma_{0}}{1-\alpha^{2}}+\alpha^{2} \gamma_{0}=\gamma_{0} \cdot\left(\frac{5 \alpha^{2}-\alpha^{4}}{1-\alpha^{2}}\right) \tag{5}
\end{equation*}
$$

substitute for $\gamma_{1}$ from (4) and $\gamma_{2}$ from (5) into (1)

$$
\begin{equation*}
\Rightarrow \quad \gamma_{0}=\frac{\sigma^{2}\left(1-\alpha^{2}\right)}{\left(1+\alpha^{2}\right)\left(1-6 \alpha^{2}+\alpha^{4}\right)} \tag{6}
\end{equation*}
$$

substitute for $\gamma_{0}$ from (6) into (4) and (5) to find $\gamma_{1}$ and $\gamma_{2}$

$$
\Rightarrow \quad \gamma_{1}=\frac{-2 \alpha \sigma^{2}}{\left(1+\alpha^{2}\right)\left(1-6 \alpha^{2}+\alpha^{4}\right)}
$$

and $\quad \gamma_{2}=\frac{\left(5 \alpha^{2}-\alpha^{4}\right) \cdot \sigma^{2}}{\left(1+\alpha^{2}\right)\left(1-6 \alpha^{2}+\alpha^{4}\right)}$

12 (i) (a) First the $u_{k}$ need to be transformed so that their distribution is something suitable for the white noise sequence of a time series, since at the very least the mean of the sequence needs to be zero. $N\left(0, \sigma_{\mathrm{e}}^{2}\right)$ is the standard choice: one method of achieving this is to define, for each integer $t$,

$$
\begin{aligned}
& \mathrm{e}_{2 \mathrm{t}}=\sigma_{\mathrm{e}} \sqrt{-2 \log \mathrm{u}_{2 \mathrm{t}}} \sin \left(2 \pi \mathrm{u}_{2 t+1}\right) \\
& \mathrm{e}_{2 t+1}=\sigma_{\mathrm{e}} \sqrt{-2 \log \mathrm{u}_{2 \mathrm{t}}} \cos \left(2 \pi \mathrm{u}_{2 t+1}\right),
\end{aligned}
$$

but there are others, such as the polar method, inverse transform method or acceptance-rejection sampling.

The values of the $e_{c}$ can now be fed into the formula to give the values of the $X_{t}$, whichever model is in use.
(b) The ability to re-use a pseudo-random number sequence is important when comparing the ability of different mechanisms to control a process which is affected by randomness: in order to ensure fair comparison of the mechanisms, the must be subjected to the same degree of "random" input.
(ii) The models do not possess the correct correlation structure.
(iii)
(a) $\rho_{1}=\operatorname{Corr}\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}-1}\right)=\alpha_{1} \operatorname{Corr}\left(\mathrm{X}_{\mathrm{t}-1}, \mathrm{X}_{\mathrm{t}-1}\right)+\alpha_{2} \operatorname{Corr}\left(\mathrm{X}_{\mathrm{t}-2}, \mathrm{X}_{\mathrm{t}-1}\right)=\alpha_{1}+\alpha_{2} \rho_{1}$.

$$
\text { Hence } \rho_{1}=\alpha_{1} /\left(1-\alpha_{2}\right)
$$

$$
\rho_{2}=\operatorname{Corr}\left(X_{t}, X_{t-2}\right)=\alpha_{1} \operatorname{Corr}\left(X_{t-1}, X_{t-2}\right)+\alpha_{2} \operatorname{Corr}\left(X_{t-2}, X_{t-2}\right)=\alpha_{1} \rho_{1}+\alpha_{2} .
$$

(b) We have $0.7=\rho_{1}=\alpha_{1} /\left(1-\alpha_{2}\right)$
and $0.5=\rho_{2}=\alpha_{2}+\alpha_{1}^{2} /\left(1-\alpha_{2}\right)=\alpha_{2}+0.7 \alpha_{1}$. Two equations in two
unknowns. Solution: $\alpha_{1}=\frac{35}{51}, \alpha_{2}=\frac{1}{51}$.
( 2 marks for the observation that $\alpha_{1}=0.7$ and $\alpha_{2}=0$ is very close to giving the right answer, as it gives $\rho_{2}=0.49$.)

