Name:	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
Roll No.:	•••••	*******		*****	
Invigilator's Signature	<i>:</i>	••••••	•••••	•••••	
CS / B.TECH (EE (N), EI	E, EEE, PWE,	BME, ICE,	ECE) / SEM-3	/ M-302 / 2	2010-11
		l 0-11			
	MATHE	EMATIC	cs		
Time Allotted: 3 Hour	s		I	Full Mark:	s: 70
The figures	s in the ma	rgin indic	ate full ma	rks.	
Candidates are requi	red to give	their ans	wers in the	eir own u	vords
		as practic			
	GRO	UP – A			
(Multip	le Choice	е Туре Q	uestions)	
1. Choose the corre	ct alternat	ives for a	ny <i>ten</i> of th	ne followi	ng :
				10 × 1	1 = 10
i) If $F[f(x)] = 1$	F (s) repres	ents the	Fourier tra	ansform (of the
function $f($	x), then	F[f(ax)]	('a' being	g a cons	stant)
equals					
a) $F(s/a)$		b)	a F (s)		
c) (1/ a)F (s/a)	d)	$(1/d^2)F$	as).	
3152				[Turn	over]

ii)	A f	unction $f(x)$, $a < x < a$	< b, can be expanded in a
	Fou	rier series	
•	a)	only if it is continuous	s everywhere
	b)	even if it is disconting points in (a, b)	nuous at a finite number of
	c)	even if it is unbounde	d in (a, b)
	d)	only if it is both contin	nuous & bounded in (a, b) .
iii)	rep		ossed simultaneously. This is the probability of getting at
	a)	$(1/8)^4$	b) (2/8) ⁴
	c)	(7/8)4	d) (3/8) ⁴ .
iv)	For	a Poisson distribution	P(X) is $P(1) = P(2)$, then
	P (0	0) is	
	a)	1/ <i>e</i>	b) $1/e^2$
	c)	$1/e^3$	d) none of these.
v)	A g	raph has 10 vertices an	d 15 edges. Its circuit rank is
	a)	25	b) , 12
	c)	6	d) 5.

vi)		binary tree ximum heigh			s. The	minimum	and
•	a)	(4,5)		b) ,	(3,5)		
	c)	(3, 10)		d)	(4, 10).		
vii)	If j	f(x) is an odd	l functio	on then ${\cal F}$	(f(x)) is	given by	
	a)	$F(s) = 2F_s($	s)	b)	F(s)=2	$2iF_s(s)$	
	c)	$F(s)=0\cdot 5s$	$F_s(s)$	d)	2F (s) =	$iF_s(s)$,	
	wh	ere ${\cal F}$ denotes	s Fourie	r Transfo	rm.		•
viii)	The	e order of pol	e z = 0 c	of the fun	ction $\frac{co}{z}$	$\frac{8z}{z^3}$ is	
	a)	2		b)	1		
	c)	3		d)	4.		
ix)	If X is normally distributed with zero mean and unit						
	var	riable, then th	ne expec	tation of	X^2 , is		
	a)	1	•	b)	0		
	c)	8		d)	2.		
x)	Th	e maximum	and m	ninimum	values	for corre	lation
	coe	efficient are					
	a)	1, 0		b)	2, 1		•
	c)	0, -1		d)	1, -1.		
		e in the second					

3152

- xi) If a simple graph has 15 edges then sum of the degrees of all the vertices is
 - a) 25

b) 24

c) 50

- d) 30.
- xii) A closed walk in which no vertex (except is terminal vertices) appear more than once is called
 - a) path

b) Eulerian circuit

c) circuit

d) trail.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following

 $3 \times 5 = 15$

- 2. If $f(z) = \frac{xy^2(x+iy)}{x^2+y^4}$, $z \neq 0 \& f(0) = 0$, then prove that $\frac{f(z)-f(0)}{z} \to 0 \text{ as } z \to 0 \text{ along any radius vector but not as}$ $z \to 0$ in any manner.
- 3. If f is analytic function then show that $\nabla^2 |f(z)|^2 = 4 \frac{\partial (u,v)}{\partial (x,y)}$ where f(z) = u + iv and z = x + iy.
- 4. Expand the following function in a Fourier series in $[-\pi, \pi]$

$$f(x) = \begin{cases} -\frac{1}{2}(\pi + x) & \text{when } -\pi \le x < 0 \\ \frac{1}{2}(\pi - x) & \text{when } 0 \le x < \pi \end{cases}$$

5. Show that f(x) given by

$$f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ k - x & \text{for } 1 < x < 2 \text{ is a probability density elsewhere} \end{cases}$$

function for a suitable value of k. Calculate the probability that the random variable lies between 1/2 and 3/2.

6. Define isomorphism of two graphs. Show whether the following graphs are isomorphic or not:

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

7. a) Consider Heavyside unit function

$$h(1-|t|) = 0, |t| > 1$$

= 1, |t| \le 1

Prove that $F^{-1}(\sin s/s) = h(1-|x|)$ where F^{-1} is the inverse Fourier transform i.e., $F^{-1}(F(s)) = f(t)$.

- b) Using Parseval's identity of Fourier transform prove that $\int_{0}^{\infty} (1 \cos x / x)^{2} dx = \pi / 2$
- c) Using Fourier transform solve the heat equation $\delta^2 u/\delta x^2 = (1/c^2)(\delta u/\delta x), -\infty < x < \infty, t > 0$ with boundary condition $u(x,t) \to 0$, $\delta u(x,t)/\delta x \to 0$ as $|x| \to \infty$ & initial condition $u(x,0) = e^{-x^2/4c^2}, -\infty < x < \infty$ 3 + 4 + 8
- 8. a) Using Dijkstra's algorithm find the length of the shortest path of the following graph:

b) Find by Prim's Algorithm a minimum spanning tree from the following graph:

8 + 7

9. a) Solve the differential equation:

$$k \partial^2 u / \partial x^2 = \partial u / \partial t, -\infty < x < \infty, t > 0$$

with $u(x,t) = 0$ as $x \to \pm \infty, \partial u / \partial t = 0$ as $x \to \pm \infty$ and $u(x,0) = f(x), -\infty < x < \infty$.

b) Apply Dijkstra's algorithm to determine a shortest path between a to z in the following graph.

10. a) The probability density function of a random variable X is f(x) = K(x-1)(2-x), for $1 \le x \le 2$.

= 0, otherwise.

Determine -

(i) the value of the constant k and

(ii)
$$P\left(\frac{5}{4} \le X \le \frac{3}{2}\right)$$
.

- b) In a normal distribution, 31% of the items are under 45 and 8% are above 64. Find the mean and standard deviation. [Given that P(0 < Z < 1.405) = 0.42 and P(-0.496 < Z < 0) = 0.19]
- c) If the equations of two Regression lines obtained in a correlation analysis are 3x+12y-19=0 and 9x+3y=46. Determine which one is Regression equation of y on x and which one is the regression equation of x on y. Find the means of x on y and correlation coefficient between x and y. 4+5+6

11. a) If
$$f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ \sin x & 0 \le x \le \pi \end{cases}$$
, prove that

$$f(x) = \frac{1}{\pi} + \frac{1}{2}\sin x - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$$

Hence show that

$$\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{2}$$
.

- b) Evaluate $\int_{C} \frac{4-3z}{(z-1)z(z-3)} dz$, where C is the circle $|z| = \frac{5}{2}$.
- c) Show that $u(x,y) = x^3 3xy^2$ is harmonic in C and find a function v(x,y) such that f(z) = u + iv is analytic.