X.

(a)

(b)

becomes turbulent?

B. Tech Degree III Semester Examination, December 2006

Maximum Marks: 100

ME 303 THERMAL ENGINEERING I

(Prior to 2002 Admissions)

Time: 3 Hours

		(All questions carry <u>EQUAL</u> marks)
I.	(a) (b)	Explain the II Law of Thermodynamics. Determine the adiabatic flame temperature when liquid octane at 25°C is burned with 300% theoretical air at 25°C in a steady flow process. OR
И.	(a) (b)	Explain the concept of availability. A cyclic heat engine operates between a source temperature of 800°C and a sink temperature of 30°C. What is the least rate of heat rejection per KW net output of the engine?
Ш.	(a) (b)	List out the comparison between two stroke and four stroke IC engines. Explain the steps involved in preparing a Heat Balance sheet. OR
IV.	(a) (b)	Explain knocking in IC engines. Explain how Morse test is conducted.
v.	(a) (b)	Derive an expression for the volumetric efficiency of a reciprocating compressor in terms of clearance ratio. Derive an expression for isothermal work in case of a single stage compressor, neglecting clearance volume.
VI.	(a) (b)	OR List out the advantages of multistage compression over single stage compression. Explain the working of a vane type rotary compressor.
VII.	(a) (b)	Explain Fourier's Law of heat conduction Explain the concept of black body. OR
VIII.	(a)	Calculate the total radiation energy exchanged per m ² between two large parallel plates at temperatures of 833K and 573 K. Take emissivity of the two plates as 0.8 and 0.6 respectively.
	(b)	Explain what is a gray body.
IX.	(a) (b)	Derive an expression for the LMTD of a parallel flow heat exchanger. Explain Newton's law of cooling.

What is Reynolds number? What is its critical value when the flow through a tube Explain with neat sketches the classification of heat exchangers.

OR