

Semester (Supplementary) Examination B. Tech Degree V May 2006

ME 503 ADVANCED MECHANICS OF SOLIDS

(2002 Admissions onwards)

Time: 3 Hours

Maximum Marks: 100

- I. (a) In a flat plate a state of plane strain exists. If $\sigma_x = 14 \, MPa$, $\tau_{xy} = 4 \, MPa$ and \in = -3.6×10⁻⁴ find the value of σ_y and the principal stresses. (10)
 - (b) The strains measured by a 3 - element rectangular rosette are given below. Find the principal strains.

(Figure)

 $\epsilon_a = 700 \times 10^{-6}, \ \epsilon_b = 300 \times 10^{-6}, \ \epsilon_c = 300 \times 10^{-6}.$ (10)

OR

Determine whether the following $\phi = \frac{3F}{4h} \left(xy - \frac{xy^3}{3h^2} \right) + \frac{p}{2} y^2$ can be used as a II. (a)

> (10)stress function. If so, determine the components of stresses represented by it.

(b) Obtain the expressions for $\sigma_r \& \sigma_v$ in terms of Lame's constants, strain components and dilatation.

(10)

III. (a) Derive the expressions for strain components in polar co-ordinates.

(8)

(b) Calculate the stresses at points A & B of the U - frame shown.

(12)

OR

- IV. Derive the expressions for radial and tangential stresses in a thick cylinder of inner (a) (10)radius 'a' and outer radius 'b' and subjected to an internal pressure of Pi.
 - A thick cylinder of internal radius 50 mm and external radius 125 mm is subjected to (b) an internal pressure of 10 N/mm². Determine the variation of radial and tangential (10)stresses across the wall thickness.

(Turn Over)

V. (a) Derive the differential equations of equilibrium in 3 – Dimensional Cartesian (10)co-ordinates. (b) Derive the equations of equilibrium in terms of displacements. (10)OR VI. 10 MPa. Calculate The stress components at a point are given by (20)the principal stresses and the orientation of principal planes. VII. (8) (a) State and explain the Castigliano's theorems. (b)

A cantilever beam AB supports a uniformly distributed load w and a concentrated load P as shown. If L = 2 m, w = 4 kN/m, $P = 6 \text{ KN and EI} = 5 \text{ MN m}^2 \text{ determine}$ the deflection at A.

VIII.

OR A channel section shown is subjected to a transverse shear force. Determine the location of the shear center.

IX. Derive the expressions for stresses in a bar of elliptical cross section subjected to a torque T. Also determine the torsional rigidity.

X. A steel box girder has the cross section shown. The wall thickness is 10 mm. If the shear stress due to torque is limited to 100 Pa; determine -

> the maximum permissible torque (i)

(ii) the twist per unit length. (20)

(20)

