SOLUTION \& ANSWER FOR AIEEE-2009 VERSION - A

[PHYSICS, CHEMISTRY \& MATHEMATICS]

PART A - PHYSICS

1. Statement 1 : For a charged particle moving from Point P to Point Q ---------

Ans : Statement -1 is true, Statement -2 is true; Statement - 2 is the correct explanation of Statement - 1
2. The above is a plot of binding energy per nucleon E_{b}, against the nuclear mass M \qquad

Ans: (i) and (iv)

Sol: Heavy nuclide disintegrates to lighter ones by releasing energy. Lighter nuclei combine to form releasing energy.
3. $\mathrm{A} p-\mathrm{n}$ junction (D) shown in the figure can act --

Ans :

Sol: Diode acts as a half wave rectifier without filter.
4. The logic circuit shown below has the input waveforms 'A' \qquad

Ans:

Sol: $\quad \overline{\mathrm{A}}+\overline{\mathrm{B}}=\mathrm{A} \cdot \mathrm{B}=\mathrm{AND}$ gate
5. If x, v and a denote the displacement, the velocity and the acceleration \qquad

Ans: $\frac{a T}{x}$

Sol: $\quad \frac{a T}{x}=\frac{-A \omega^{2} \sin \omega t . T}{A \sin \omega t}=-\omega^{2} T=$ constant
6. In an optics experiment, with the position of the object ------

Ans : (af, af)
Sol: $\frac{1}{u}+\frac{1}{v}=\frac{1}{f} \Rightarrow u=v=2 f$
7. A thin uniform rod of length ' ℓ ' and mass m is swinging freely ----

Ans: $\frac{1}{6} \frac{\ell^{2} \omega^{2}}{\mathrm{~g}}$

Sol: $\quad \mathrm{E}=\frac{1}{2} \mathrm{I} \omega^{2}=\frac{1}{2} \frac{\mathrm{~m} \ell^{2}}{3} \omega^{2}=\mathrm{mgh}$

$$
\Rightarrow \mathrm{h}=\frac{\ell^{2} \omega^{2}}{6 \mathrm{~g}}
$$

8. Let $P(r)=\frac{Q}{\pi R^{4}} r$ be the charge density distribution for a --------

Ans : $\frac{\mathrm{Qr}_{1}{ }^{2}}{4 \pi \varepsilon_{0} \mathrm{R}^{4}}$

Sol: $\quad q=\int_{0}^{r_{1}} 4 \pi r^{2} d r \frac{Q}{\pi R^{4}} r=\frac{\text { Qr }_{1}{ }^{4}}{R^{4}}$

$$
\mathrm{E}=\frac{\mathrm{Qr}_{1}^{4}}{\mathrm{R}^{4}} \cdot \frac{1}{4 \pi \varepsilon_{0} \mathrm{r}_{1}^{2}}=\frac{\mathrm{Qr}_{1}^{2}}{4 \pi \varepsilon_{0} \mathrm{R}^{4}}
$$

9. The transition from the state $\mathrm{n}=4$ to $\mathrm{n}=3$ in a ---
\qquad

Ans: $5 \rightarrow 4$

Sol: Transition $\mathrm{n}_{\mathrm{x}} \rightarrow \mathrm{n}_{\mathrm{x}-1}$ is minimum for larger x.
10. One kg of a diatomic gas is at a pressure of \qquad

Ans : $5 \times 10^{4} \mathrm{~J}$

Sol: $\quad P V=n R T$

$$
\begin{aligned}
& P \frac{m}{\rho}=n R T \\
& V=\frac{5}{2} n R T=\frac{5}{2} \rho \frac{m}{V}=5 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

11. Statement 1: The temperature dependence of resistance is usually \qquad

Ans: Statement -1 is false, Statement -2 is true.
12. The magnitude of the magnetic field (B) due to the loop \qquad
Ans: $\frac{\mu_{0} I(b-a)}{24 a b}$
Sol: $\quad B=\frac{\mu_{0} I}{2}\left(\frac{30}{360}\right)\left(\frac{1}{a}-\frac{1}{b}\right)$
13. Due to the presence of the current I_{1} at the \qquad

Ans: The forces on $A D$ and $B C$ are zero.

Sol: \bar{B} vector is parallel to each current element along $A D$ and $B C$

$$
\operatorname{Id} \bar{\ell} \times \bar{B}=0
$$

14. A mixture of light, consisting of wavelength 590 nm and an unknown

Ans : 442.5 nm

Sol: $\quad 3 \beta_{\text {kn own }}=4 \beta_{\text {unknown }}$
$\therefore 3 \lambda_{\text {known }}=4 \lambda_{\text {unknown }}$
$\lambda_{\text {unknown }}=\frac{3}{4} \lambda_{\text {known }}=442.5 \mathrm{~nm}$
15. Two points P and Q are maintained at the potentials \qquad
Ans: $2.24 \times 10^{-16} \mathrm{~J}$

Sol: $\quad W=q \Delta V$

$$
=-1.6 \times 10^{-19} \times(-14) \times 100
$$

$$
=2.24 \times 10^{-16} \mathrm{~J}
$$

16. The surface of a metal is illuminated with the light
\qquad

Ans: 1.41 eV

Sol: $\quad h v=\frac{1240}{400}=3.1 \mathrm{eV}$
$K E_{\text {max }}=1.68 \mathrm{eV}$
$\therefore \phi=3.1-1.68=1.41 \mathrm{eV}$
17. A particle has an initial velocity of ------

Ans: $7 \sqrt{2}$ units
Sol: $\quad \bar{v}=\bar{u}+\overline{a t}$
$=(3 \hat{i}+4 \hat{j})+10(0.4 \hat{i}+0.3 \hat{j})$
$|\overline{\mathrm{v}}|=|(7 \hat{\mathrm{i}}+7 \hat{\mathrm{j}})|$
18. A motor cycle starts from rest and accelerates ---

Ans: 98 m
Sol: $f=f_{0}\left(\frac{330-u_{\ell}}{330}\right)=0.94 \mathrm{f}_{0}$
$330-\mathrm{u}_{\ell}=0.94 \times 330$
$\mathrm{u}_{\ell}=19.8 \mathrm{~m} / \mathrm{s}$

$$
\therefore S=\frac{1}{2} a t^{2}=98 \mathrm{~m}
$$

19. Consider a rubber ball freely falling from a height
\qquad

Ans :

Sol: Velocity reverses instantaneously; downward direction of velocity needs to be treated as negative according to sign conservation.
20. A charge Q is placed at each of the opposite corners of a -------

Ans: $-2 \sqrt{2}$

Sol:

Magnitudes of forces

$$
\frac{1}{\mathrm{~K}} \frac{\mathrm{Q}^{2}}{(\sqrt{2} \mathrm{a})^{2}}=\frac{1}{\mathrm{~K}} \frac{\mathrm{Qq}}{\mathrm{a}^{2}} \cdot 2 \frac{1}{\sqrt{2}}
$$

$$
\frac{Q}{q}=-2 \sqrt{2}
$$

21. A long metallic bar is carrying heat from one of its ends to the other ------

Ans:

Sol: $\quad \Delta \mathrm{Q}=-\mathrm{KA} \frac{\Delta \mathrm{T}}{\Delta \mathrm{X}}$
ΔQ constant $\Rightarrow \frac{\Delta T}{\Delta X}$ constant.
22. A transparent solid cylindrical rod has a refractive

$$
\text { Ans : } \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)
$$

Sol: $\quad \operatorname{Sin}(90-r)=\frac{1}{\mu}=\frac{\sqrt{3}}{2}$
$\operatorname{Cos} r=\frac{\sqrt{3}}{2} \Rightarrow r=30^{\circ}$
$\frac{\sin i}{\sin r}=\mu=\frac{2}{\sqrt{3}}$
$\sin \mathrm{i}=\frac{1}{\sqrt{3}}$
$I=\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
23. Three sound waves of equal amplitudes have frequencies \qquad
Ans: 1

Sol: Resultant frequency of $(v-1)$ and $(v+1)$ with v cannot produce any beat. Beat can produce either with v and $(v+1)$ or v and $(v-1)$ where the beat frequency is 1 .
24. The height at which the acceleration due to gravity becomes \qquad
Ans: 2 R
Sol: $g=\frac{G M}{R^{2}}$

$$
\begin{aligned}
& \frac{g}{9}=\frac{G M}{(R+h)^{2}} \Rightarrow \frac{(R+h)^{2}}{R^{2}}=9 \\
& h=2 R
\end{aligned}
$$

25. Two wires are made of the same material and have the same volume ------

Ans: 9 F

Sol: $\frac{\frac{F}{A}}{\frac{(\Delta \ell)}{\ell}}=Y \Rightarrow F=Y A \frac{(\Delta \ell)}{\ell}$

$$
\begin{aligned}
& \mathrm{V}_{1}=\mathrm{A} \ell ; \mathrm{V}_{2}=3 \mathrm{~A} \cdot \frac{\ell}{3}=\mathrm{V}_{1} \\
& \frac{\frac{\mathrm{~F}^{\prime}}{3 \mathrm{~A}}}{\frac{\Delta \ell}{\ell / 3}}=\mathrm{Y} \Rightarrow \mathrm{~F}^{\prime}=\mathrm{Y} \cdot 3 \mathrm{~A} \frac{(\Delta \ell)}{\ell} \cdot 3=9 \mathrm{~F}
\end{aligned}
$$

26. In an experiment the angles are required to be measured using an

Ans: One minute
Sol: $\quad \frac{1 . \mathrm{m} . \mathrm{s} . \mathrm{d} .}{\mathrm{N}}=\frac{1 / 2}{30}=\frac{1}{60}$ 。

$$
=1
$$

27. An inductor of inductance $\mathrm{L}=400 \mathrm{mH}$ and resistors -----

Ans: $12 e^{-5 t} V$
Sol: $\quad I=\frac{L}{R}=0.2$
$E=E_{0} e^{-t / \tau}=12 e^{-5 t}$
R_{1} has no role
28. Assuming the gas to be ideal the work done ------

Ans: 400 R
Sol: $\quad V_{1}=\frac{\mathrm{nRT}_{1}}{\mathrm{P}}$
$V_{2}=\frac{n R T_{2}}{P}$
$V_{2}-V_{1}=\frac{n R}{P}\left(T_{2}-T_{1}\right)$
$\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)=\mathrm{nR}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)=400 \mathrm{R}$
29. The work done on the gas in taking it from D to A is --------

Ans: - 414 R
Sol: $\quad V_{A} P_{A}=V_{D} P_{D} \Rightarrow \frac{V_{A}}{V_{D}}=\frac{P_{D}}{P_{A}}=\frac{1}{2}$

$$
W=n R T \operatorname{In}\left(\frac{V_{2}}{V_{1}}\right)=2 R .300 \operatorname{In}\left(\frac{1}{2}\right)
$$

$$
=-414 R
$$

30. The net work done on the gas in the cycle -----

Ans : 276 R

Sol: $\quad W_{A B}=400 \mathrm{R} ; \mathrm{W}_{\mathrm{CD}}=-400 \mathrm{R}$
$W_{D A}=-414 R$;
$W_{B C}=n R T \operatorname{In} \frac{V_{C}}{V_{B}}$
$=2 R .500$. In 2
$=693 \mathrm{R}$
$W_{\text {total }}=(693-414) R$
$=279 \mathrm{R}$

PART B - CHEMISTRY
31. Knowing that the Chemistry of lanthanoids
\qquad is incorrect?

Ans: Ln (III) compounds are generally colourless.

Sol: Except $\mathrm{La}^{3+}, \mathrm{Lu}^{3+}$, other lanthanoids exhibit colour in both solid state and in aqueous solution.
32. A liquid was mixed with ethanol and a drop of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added.........

Ans: $\mathrm{CH}_{3} \mathrm{COOH}$
Sol: Acetic acid forms ethyl acetate (ester) having fruity smell when heated with ethanol in presence of a drop of con. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

33. Arrange the carbanions, $\left(\mathrm{CH}_{3}\right)_{3} \overline{\mathrm{C}}, \overline{\mathrm{C}} \mathrm{Cl}_{3}$, $\left(\mathrm{CH}_{3}\right)_{2} \overline{\mathrm{C}} \mathrm{H}, \ldots \ldots$.

Ans: $\stackrel{(-)}{\mathrm{CCl}_{3}}>\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}^{(-)}>\left(\mathrm{CH}_{3}\right)_{2} \stackrel{-}{\mathrm{C}} \mathrm{H}>$
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{(-)}$
Sol: $\quad \stackrel{(-)}{\mathrm{C}} \mathrm{Cl}_{3}$ is stable due to the -l effect of three chlorine atoms. Further it is stabilised by the resonance due to the presence of d-orbitals on chlorine. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{\mathrm{H}}^{(-)}$is stabilised by resonance. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{(-)}$is the least stable ion due to the +1 effect of three methyl groups.
34. The alkene that exhibits geometrical \qquad

Ans: 2-butene
Sol :

35. In which of the following the sequence is not strictly.

Ans: $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$: increasing basic strength.

Sol: NH_{3} is the most basic . Basic strength decreases from NH_{3} to SbH_{3}.
36. The major product obtained \qquad of phenol with sodium hydroxide \qquad

Ans: Salicylic acid
Sol :

Salicyclic acid
It is Kolbe's reaction.
37. Which of the following \qquad is incorrect \qquad physisorptions?

Ans: Enthalpy of adsorption $\left(\Delta \mathrm{H}_{\text {adsorption }}\right)$ is low and positive.

Sol : $\Delta \mathrm{H}$ is negative for adsorption.
38.
. KOH , produces acetaldehyde?

Ans: $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$
Sol :

39. In an atom, an electron is moving

Ans: $1.92 \times 10^{-3} \mathrm{~m}$

Sol : $\Delta x \mathrm{~m} \Delta \mathrm{v}=\frac{\mathrm{h}}{4 \pi} \quad \Delta \mathrm{v}=\frac{0.005}{100} \times 600=0.03$

$$
\begin{aligned}
\Delta x & =\frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 9.1 \times 10^{-31} \times 0.03} \\
& =1.92 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

40. In a fuel cell methanol is used \qquad

Ans: 97\%

Sol : Efficiency $=\frac{\Delta \mathrm{G}}{\Delta \mathrm{H}}$

$$
\begin{aligned}
& \Delta \mathrm{G}=(-394.4 \mathrm{~kJ}+2 \times-237.2 \mathrm{~kJ}) \\
& \\
& \quad-(-166.2 \mathrm{~kJ})=-702.6 \mathrm{~kJ} \\
& \Delta \mathrm{H}=-726 \mathrm{~kJ} \\
& \text { Efficiency }=\frac{-702.6}{-726} \times 100=97 \%
\end{aligned}
$$

41. Two liquids X and Y form an ideal solution.

Ans: 400 and 600
Sol : $\frac{1}{4} X+\frac{3}{4} Y=550$

$$
\begin{aligned}
& \frac{1}{5} X+\frac{4}{5} Y=560 \\
& \text { Solving } X=400 \mathrm{~mm} \mathrm{Hg} \\
& Y=600 \mathrm{mmHg}
\end{aligned}
$$

42. The half life period of a first order \qquad
Ans: 46.06 minutes

$$
\begin{aligned}
& \text { Sol : } \lambda=\frac{2.303}{t} \log \frac{N_{0}}{N_{t}} \\
& \frac{0.693}{t_{1}}=\frac{2.303}{t} \log \frac{100}{1} \\
& \frac{0.693}{6.93}=\frac{2.303}{t} \times 2 \\
& t=46.06 \text { minutes }
\end{aligned}
$$

43. Given:
$\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}}^{0}=-0.036 \mathrm{~V}$, \qquad

Ans: 0.770 V

Sol :

\[

\]

44. On the basis of the following \qquad

Ans: -228.88 kJ

Sol : Given $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$

$$
\begin{aligned}
& \Delta \mathrm{H}=57.32 \mathrm{~kJ} \\
& \therefore 57.32 \mathrm{~kJ}=\Delta \mathrm{fH}_{\mathrm{OH}_{-\mathrm{aq})}^{-}}^{0}-(-286.2 \mathrm{~kJ}) \\
& \Delta \mathrm{fH}_{\mathrm{OH}_{(\mathrm{aq})}^{-}}^{0}=-228.88 \mathrm{~kJ}
\end{aligned}
$$

45. Copper crystallises in fcc with a

Ans: 127 pm
Sol : $\sqrt{2} \mathrm{a}=4 \mathrm{r}$

$$
\mathrm{r}=\frac{\sqrt{2} \times 361 \mathrm{pm}}{4}=127 \mathrm{pm}
$$

46. \qquad has an optical isomer?

Ans: $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{3+}$
Sol : Cis $\left[\mathrm{Co}(\mathrm{en})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{3+}$ is optically active.
47. Solid $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ is gradually dissolved \qquad
Ans: $5.1 \times 10^{-5} \mathrm{M}$

Sol : $\mathrm{K}_{\mathrm{sp}\left(\mathrm{BaCO}_{3}\right)}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CO}_{3}^{2-}\right]=5.1 \times 10^{-9}$

$$
\therefore\left[\mathrm{Ba}^{2+}\right]=\frac{5.1 \times 10^{-9}}{10^{-4}}
$$

$$
=5.1 \times 10^{-5} \mathrm{M}
$$

48. \qquad Xenon compounds is not fesible?

Ans: $\mathrm{XeO}_{3}+6 \mathrm{HF} \rightarrow \mathrm{XeF}_{6}+3 \mathrm{H}_{2} \mathrm{O}$

Sol : XeO_{3} reacts with aqueous alkali but not with acids.
49. Using MO theory \qquad shortest bond length?

Ans: O_{2}^{2+}

Sol : In O_{2}^{2+} the bond order is three, hence the shortest bond length.
50. In context with the transition elements, the following statements is incorrect?

Ans: In the highest oxidation states the transition metals show basic character and form cationic complexes.

Sol : In the highest oxidation state the transition metals show acidic character.
51. Calculate the wavelength \qquad

Ans: 0.40 nm

Sol : $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{6.63 \times 10^{-34} \mathrm{Js}}{1.67 \times 10^{-27} \mathrm{~kg} \times 10^{3} \mathrm{~ms}^{-1}}$

$$
=4 \times 10^{-10} \mathrm{~m}=0.4 \mathrm{~nm}
$$

52. A binary liquid solution is prepared by

Ans: The solution is non-ideal, showing +ve deviation from Raoult's Law.

Sol : n -heptane reduces the attraction between the ethanol molecules and there by mutually increases the vapourising tendency.
53. The number of stereoisomers possible

Ans: 4

Sol : The compound $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}(\mathrm{OH})-\mathrm{Me}$ can show geometrical as well as optical isomerism. Hence the cis and trans isomers can have the (+) and (-) forms. So the total number of stereoisomers is 4 .
54. The IUPAC name \qquad

Ans: 2, 2-dimethylpropane

Sol :

: 2, 2-dimethylpropane
(neopentane)
55. \qquad correct order of ionic radius is:

Ans: $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$

Sol : The ionic radii in pm are

$\mathrm{Be}^{2+}=31$	$\mathrm{Mg}^{2+}=72$
$\mathrm{Li}^{+}=76$	$\mathrm{Na}^{+}=102$

56. The two functional groups present

Ans: $\searrow \mathrm{C}=\mathrm{O}$ and -OH

Sol : Carbohydrates are polyhydroxy carbonyl compounds.
57. The bond dissociation energy of $B-F$ in

Ans: Significant $p \pi-p \pi$ interaction between B and F in BF_{3} whereas there is no possibility of such interaction between C and F in CF_{4}.

Sol : $\mathrm{p} \pi-\mathrm{p} \pi$ back bonding in BF_{3} makes $\mathrm{B}-\mathrm{F}$ bonds stronger whereas in CF_{4} no such back bonding is possible, as there is no vacant p -orbital in carbon.
58. In Cannizzaro reaction \qquad the slowest step is:

Ans: the transfer of hydride to the carbonyl group

Sol: The rate determining step in Cannizzaro reaction is the transfer of hydride ion from the anion formed by the addition of $\stackrel{(-)}{\mathrm{OH}}$ to the carbonyl group of the other aldehyde molecule.
59. \qquad represents linkage isomers?

Ans: $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{NCS})_{2}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{SCN})_{2}\right]$

Sol : Linkage of the ambidentate ligand CNS is through two different sites in the complexes.
60. Buna - N synthetic rubber \qquad
Ans: $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CN}$ and
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
Sol : Buna -N is a copolymer of 1,3 -butadiene and acrylonitrile $\left(\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CN}\right)$

PART C - MATHEMATICS

61. Let a, b, c be such that $b(a+c) \neq 0$.

Ans: any odd integer
Sol: $\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|+$

$$
\left|\begin{array}{ccc}
a+1 & b+1 & c-1 \\
a-1 & b-1 & c+1 \\
(-1)^{n+2} a & (-1)^{n+1} b & (-1)^{n} c
\end{array}\right|=0
$$

$$
\Delta+(-1)^{n}\left|\begin{array}{ccc}
a+1 & b+1 & c-1 \\
a-1 & b-1 & c+1 \\
a & -b & c
\end{array}\right|
$$

$\Delta+(-1)^{\mathrm{n}} \Delta=0 \Rightarrow \mathrm{n}$ is any odd integer
62. If the mean deviation of the numbers $1, \ldots$

Ans: 10.1

Sol: The mean of the given numbers is the middle term $1+50 d$

$$
\begin{aligned}
& \therefore M . D=\frac{2(d+2 d+\ldots . .+50 d)}{101} \\
&=\frac{2}{101} d(1+2+\ldots .+50) \\
&=\frac{2}{101} d \frac{(50) \times(51)}{2}=\frac{2550}{101} d=255 \\
& d=10.1
\end{aligned}
$$

63. If the roots of the equation $b x^{2}+c x+a=0$

Ans: greater than $-4 a b$
Sol: Roots of $b x^{2}+c x+a=0$ are imaginary
$\Rightarrow c^{2}-4 a b<0$
$\Rightarrow c^{2}<4 a b-(1)$
Now the extremum value of $3 b^{2} x^{2}+6 b c x+2 c^{2}$ is

$$
\begin{aligned}
& \frac{-\left((6 b c)^{2}-4 \times 3 b^{2} \times 2 c^{2}\right)}{4 \times 3 b^{2}} \\
& =\frac{-12 b^{2} c^{2}}{12 b^{2}}=-c^{2}>-4 a b \text { by }(1)
\end{aligned}
$$

64. Let A and B denote the statements

Ans: both a and b are true

Sol: $\Sigma(\cos \alpha \cos \beta+\sin \alpha \sin \beta)=\frac{-3}{2}$
$\therefore \Sigma \cos ^{2} \alpha+\Sigma \sin ^{2} \alpha+2 \sum \cos \alpha \cos \beta$
$+2 \sum \sin \alpha \sin \beta=0$
i.e., $(\cos \alpha+\cos \beta+\cos \gamma)^{2}$
$+(\sin \alpha+\sin \beta+\sin \gamma)^{2}=0$
i.e., $\cos \alpha+\cos \beta+\cos \gamma=0$ and $\sin \alpha+\sin \beta+\sin \gamma=0$
65. The lines $p\left(p^{2}+1\right) x-y+q=0 \ldots$

Ans: Exactly one value of p
Sol: Given two lines are parallel
slope $m_{1}=p\left(p^{2}+1\right), m_{2}=-\left(p^{2}+1\right)$
Since $m_{1}=m_{2}$ we get $p=-1$
\therefore exactly one value of p
66. If A, B and C are three sets such that $A \cap B$

Ans: $B=C$
Sol: $A \cap B=A \cap C$ and $A \cup B=A \cup C \Rightarrow B=C$
67. If $\bar{u}, \bar{v}, \bar{w}$ are non-coplanar vectors

Ans: exactly one value of (p, q)
Sol: $3 p^{2}[u v w]-p q[v w u]-2 q^{2}[w v u]=0$
$\Rightarrow 3 p^{2}[u \vee w]-p q[u \vee w]+2 q^{2}[u \vee w]=0$
$\Rightarrow[u \vee w]\left(3 p^{2}-p q+2 q^{2}\right)=0$
$3 p^{2}-p q+2 q^{2}=0(\because[u \vee w] \neq 0)$
Since discriminant of the above equation <0, the equation has real roots only when $p=0 \& q=0$.
68. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lie in the ...

Ans: $(-6,7)$

Sol: The normal to the plane is perpendicular to the line
$\therefore 3 \times 1+3 \times-5+2 x-\alpha=0$
$\Rightarrow \alpha=-6$
$(2,1,-2)$ lies in the plane
$\therefore 2+3 \times 1+6 \times-2+\beta=0$

$$
\begin{aligned}
& \Rightarrow \beta=7 \\
& \therefore(\alpha, \beta)=(-6,7)
\end{aligned}
$$

69. From 6 different novels and 3 different

Ans: atleast 1000

Sol: 6 novels, 3 dictionaries
To select 4 novels and 1 dictionary. This can be done in ${ }^{6} \mathrm{C}_{4} \times{ }^{3} \mathrm{C}_{1}$ ways $=15 \times 3=45$ ways

Dictionary is to be placed in the middle. 4 novels can be arranged in the 4 places in 4 ! $=24$ ways
\therefore Number of ways $=45 \times 24=1080$
70. $\int_{0}^{\pi}[\cot x] d x$, where [.] denotes the greatest ...

Ans: $-\frac{\pi}{2}$

Sol: $\int_{0}^{\pi}(\cot x) d x$
Put $x=\frac{\pi}{2}-t \Rightarrow d x=-d t$

$$
\begin{aligned}
& =-\int_{\pi / 2}^{-\pi / 2} \cot [\pi / 2-t] d t \\
& =-\int_{-\pi / 2}^{\pi / 2}[\tan x] d x
\end{aligned}
$$

Now, consider the greatest integer function $\int_{-n}^{n}[x] d x=-n$
$\therefore \int_{-\pi / 2}^{\pi / 2}[\tan x] d x=\frac{-\pi}{2}$
71. For real x, let $f(x)=x^{3}+5 x+1$, then....

Ans: f is one-one and onto R
Sol: $f^{\prime}(x)=3 x^{2}+5>0 \forall x \Rightarrow f(x)$ is increasing Thus f is one-one

Also $f^{\prime}(x) \neq 0$ for any real x. Thus f attains neither a maximum nor a minimum at any real points. That is f is an ever increasing function. Hence it is one-one and onto
72. In a binomial distribution $B\left(n, p=\frac{1}{4}\right)$, if

Ans: $\frac{1}{\log _{10} 4-\log _{10} 3}$
Sol: $\mathrm{p}=\frac{1}{4} \quad \therefore \mathrm{q}=\frac{3}{4}$
$P(X=x)={ }^{n} C_{x} p^{x} q^{n-x}$
Given that $1-P(x=0) \geq \frac{9}{10}$
$\therefore \mathrm{P}(\mathrm{X}=0) \leq 1-\frac{9}{10}=\frac{1}{10}$
i.e., ${ }^{n} C_{0} P^{0} . q^{n-0} \leq \frac{1}{10}$
i.e., $\left(\frac{3}{4}\right)^{n} \leq \frac{1}{10}$
i.e., $\operatorname{llog}_{10} \frac{3}{4} \leq-1$

$$
\begin{aligned}
\therefore \mathrm{n} & \leq \frac{-1}{\log _{10} \frac{3}{4}} \\
& =\frac{1}{\log _{10} 4-\log _{10} 3}
\end{aligned}
$$

73. If P and Q are the points of intersection of ...

Ans: all except one value of p
Sol: Equation of circle passing through the intersection of the given circles is

$$
\text { i.e., } \begin{aligned}
x^{2}+y^{2} & +3 x+7 y+2 p-5 \\
& +\lambda\left(x+5 y+2 p-5+p^{2}\right)=0
\end{aligned}
$$

Given that it passes through $(1,1)$
i.e., $(7+2 p)+\lambda(1+p)^{2}=0$
$\Rightarrow \lambda=\frac{-(7+2 \mathrm{p})}{(1+\mathrm{p})^{2}}$
i.e., λ does not exist at $p=-1$
\therefore all except one value of p
74. The projection of a vector on the three

Ans: $\left(\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}\right)$

Sol: The given vector is $6 \mathrm{i}-3 \mathrm{j}+2 \mathrm{k}$. Its direction

$$
\begin{aligned}
\text { cosines are } & \left(\frac{6}{\sqrt{6^{2}+3^{2}+2^{2}}}, \frac{-3}{\sqrt{6^{2}+3^{2}+2^{2}}}\right. \\
& \left.\frac{2}{\sqrt{6^{2}+3^{2}+2^{2}}}\right) \\
& =\left(\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}\right)
\end{aligned}
$$

75. If $\left|Z-\frac{4}{Z}\right|=2$, then the maximum value

Ans: $\sqrt{5}+1$

$$
\begin{gathered}
\text { Sol: }\left|z+\frac{4}{z}\right|=2 \Rightarrow|z|-\left|\frac{4}{2}\right| \leq 2 \\
\Rightarrow|z|^{2}-2|z|-4 \leq 0 \\
\quad \Rightarrow|z| \in[0,1+\sqrt{5}]
\end{gathered}
$$

\therefore Maximum value of $|z|$ is $1+\sqrt{5}$
76. Three distinct points A, B and C are

Ans: $\left(\frac{5}{4}, 0\right)$

Sol: Let (x, y) be the any point
Then $\frac{\sqrt{(x-1)^{2}+y^{2}}}{\sqrt{(x+1)^{2}+y^{2}}}=\frac{1}{3}$
$\Rightarrow 9\left((x-1)^{2}+y^{2}\right)=(x+1)^{2}+y^{2}$
$\Rightarrow 8 \mathrm{x}^{2}+8 \mathrm{y}^{2}-20 \mathrm{x}+8=0$
$\Rightarrow x^{2}+y^{2}-\frac{5}{2} x+1=0$
Circumcentre $\left(\frac{5}{4}, 0\right)$
77. The remainder left out when $8^{2 n}-(62)^{2 n+1} \ldots$

Ans: 2

$$
\begin{aligned}
\text { Sol: } & 8^{2 n}-(62)^{2 n+1}=(9-1)^{2 n}-(63-1)^{2 n+1} \\
& =\left[9^{2 n}-2^{2 n} C_{1} \cdot 9^{2 n-1}+\ldots \ldots+(-1)^{2 n}\right]- \\
& {\left[63^{2 n+1}-(2 n+1)\right.} \\
& =[M(9)+1]-\left[M\left(93^{2 n}+\ldots \ldots .+(-1)^{2 n+1}\right]\right. \\
& =M(9)+2 \\
& \therefore \text { The remainder when } 8^{2 n}-(62)^{2 n+1} \text { is } \\
& \text { divided by } 9 \text { is } 2
\end{aligned}
$$

78. The ellipse $x^{2}+4 y^{2}=4$ is inscribed ...

Ans: $x^{2}+12 y^{2}=16$

Sol:

Equation of required ellipse is $\frac{x^{2}}{4^{2}}+\frac{y^{2}}{b^{2}}=1$
It passes through $(2,1) \Rightarrow b=\frac{3}{4}$
\therefore Equation is $\mathrm{x}^{2}+12 \mathrm{y}^{2}=16$
79. The sum to infinity of the series

Ans: 3

Sol: Put $S=\frac{2}{3}+\frac{6}{3^{2}}+\frac{10}{3^{3}}+\ldots$.

$$
\begin{aligned}
\frac{1}{3} S & =\frac{2}{3^{2}}+\frac{6}{3^{3}}+\frac{10}{3^{4}}+\ldots \\
\frac{2}{3} S & =\frac{2}{3}+\frac{4}{3^{2}}+\frac{4}{3^{3}}+\ldots \\
& =\frac{2}{3}+\frac{4}{9} \cdot \frac{1}{1-\frac{1}{3}} \\
& =\frac{2}{3}+\frac{2}{3}=\frac{4}{3}
\end{aligned}
$$

$S=2$
\therefore required sum $=1+2=3$
80. The differential equation which represents the ...

Ans: $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$

Sol: $y=c_{1} e^{c_{2} x} \Rightarrow \log y=\log c_{1}+c_{2} x$
$\therefore \frac{1}{y} \cdot y^{\prime}=c_{2}$
Again differentiating

$$
\frac{y \cdot y^{\prime \prime}-\left(y^{\prime}\right) \cdot\left(y^{\prime}\right)}{(y)^{2}}=0
$$

i.e., $y y^{\prime \prime}=\left(y^{\prime}\right)^{2}$
81. One ticket is selected at random from 50

Ans: $\frac{1}{14}$

Sol: Product is zero. Total number of selections are $00,01,02$, 10, 20, 30, 40. There are 14 cases out of which only 08 (sum of digits should be 8) is the favorable case.
\therefore Required probability $=\frac{1}{14}$
82. Let y be an implicit function of x defined ...

Ans: - 1
Sol: Put $\mathrm{x}^{\mathrm{x}}=\mathrm{t}$.
Then $t^{2}-2 t \cot y+\cot ^{2} y-\operatorname{cosec}^{2} y=0$
$\Rightarrow(\mathrm{t}-\cot \mathrm{y})^{2}=\operatorname{cosec}^{2} \mathrm{y}$
$\Rightarrow t-\cot y= \pm \operatorname{cosec} y$
$\Rightarrow t=\cot y \pm \operatorname{cosec} y$
$\Rightarrow x^{x}=\cot y \pm \operatorname{cosec} y$
Differentiating, $\mathrm{x}^{\mathrm{x}}(1+\log \mathrm{x})$

$$
=\left(-\operatorname{cosec}^{2} y \pm \operatorname{cosec} y \cot y\right) y^{\prime}
$$

$$
=-\operatorname{cosec} y(\operatorname{cosec} y \pm \cot y) y^{\prime}
$$

$$
=-\operatorname{cosec} y x^{x} y^{\prime}
$$

$$
\Rightarrow y^{\prime}=\frac{-(1+\log x)}{\operatorname{cosec} y}
$$

When $x=1,1-2 \cot y-1=0 \Rightarrow y=\frac{\pi}{2}$

$$
\therefore y^{\prime}(1)=\frac{-(1+\log 1)}{\operatorname{cosec} \frac{\pi}{2}}=-1
$$

83. The area of the region bounded by the

Ans: 9
Sol:

Required area $=\int_{0}^{3}\left(x_{1}-x_{2}\right) d y=9$
84. Given $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ such \ldots.

Ans: $P(-1)$ is not minimum and $P(1)$ is the maximum of P

Sol: $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$
$P^{\prime}(0)=0 \Rightarrow\left(4 x^{3}+3 a x^{2}+2 b x+c\right)$ at $x=0$ is
zero $\Rightarrow c=0$.
Now, $P^{\prime}(x)=4 x^{3}+3 a x^{2}+2 b x$

$$
=x\left(4 x^{2}+3 a x+2 b\right) .
$$

Since $x=0$ is the only solution, $4 x^{2}+3 a x+2 b>0$ for all $x \in R$.
$\therefore P^{\prime}(-1)<0$ and $P^{\prime}(1)>0$. \Rightarrow derivative changes sign from -ve to +ve and $\mathrm{x}=0$ is a point of minimum.
Given $P(-1)<P(1) \Rightarrow P(1)$ is maximum and $P(0)$ is minimum in the interval $[-1,1]$.
Thus in $[-1,1], p(-1)$ is not minimum and $p(1)$ is the maximum
85. The shortest distance between the line ...

Ans: $\frac{3 \sqrt{2}}{8}$

Consider $x=y^{2}$. Slope of the curve $=\frac{1}{2 y}$
Shortest distance $=$ perpendicular distance \Rightarrow slope of tangent to the curve should be same as slope of line.
$\therefore \frac{1}{2 y}=1 \Rightarrow y=\frac{1}{2}$
$\Rightarrow x=\frac{1}{4}$
Distance of $\left(\frac{1}{4}, \frac{1}{2}\right)$ from line $x+1=y$ is $\frac{3 \sqrt{2}}{8}$
86. Let $f(x)=(x+1)^{2}-1, x \geq-1$

Ans: Statement -1 is true, Statement - 2 is true
Statement - 2 is a correct explanation for Statement - 1

Sol:

$f(x)=(x+1)^{2}-1, x \geq-1$
$f(x)=x^{2}+2 x, x \geq-1$
Obviously f is a bijection.(Refer graph)
\therefore Inverse of f exists
$f^{-1}(x)=\sqrt{x+1}-1$
Let $f(x)=f^{-1}(x)$
$x^{2}+2 x=\sqrt{x+1}-1$
$\therefore \mathrm{x}^{2}+2 \mathrm{x}+1=\sqrt{\mathrm{x}+1}$
$\Rightarrow(x+1)^{2}=\sqrt{x+1}$
Possible only for $x=0$ and $x=-1$

Statement 1 true and as shown above follows from statement 2
87. Let $f(x)=x|x|$ and $g(x)=\sin x$

Ans: Statement -1 is true, Statement 2 is false
Sol: $f(x)=\left\{\begin{array}{cc}-x^{2} & x<0 \\ x^{2} & x \geq 0\end{array}\right\} g(x)=\sin x$
$\therefore(g \circ f)(x)=\left\{\begin{array}{cc}-\sin x^{2} & x<0 \\ x^{2} & x \geq 0\end{array}\right\}$
Let $h(x)=(g \circ f) x$
$\therefore h^{\prime}(x)=\left\{\begin{array}{ll}-2 x \cdot \cos \left(x^{2}\right) & x<0 \\ +2 x \cos \left(x^{2}\right) & x \geq 0\end{array}\right\}$
at $x=0, h^{\prime}(x)=0$ is differentiable
Again
$h^{\prime \prime}(x)=\left\{\begin{array}{cl}2 x^{2} \sin x^{2}-2 \cos \left(x^{2}\right) & x<0 \\ -2 x^{2} \sin x^{2}+2 \cos \left(x^{2}\right) & x \geq 0\end{array}\right.$
$\therefore h^{\prime \prime}(0)=\left\{\begin{array}{cc}-2 & x<0 \\ 2 & x>0\end{array}\right\}$
i.e., $h "(x)$ is not differentiable
88. Statement -1 : The variance of the first $\mathrm{n} \ldots$

Ans: Statement -1 is true, Statement -2 is false
Sol: Statement 2 is true (Direct result)

$$
\begin{aligned}
x_{i} & =2,4,6, \ldots 2 n \\
\sigma^{2} & =\frac{1}{n} \sum x_{i}^{2}-\left(\frac{\sum x}{n}\right)^{2} \\
& =\frac{2^{2}}{n} \sum n^{2}-\frac{2^{2}}{n^{2}}\left(\sum n\right)^{2} \\
& =\frac{2^{2}}{n}\left(\frac{n(n+1)(2 n+1)}{6}-\frac{1}{n}\left(\frac{n(n+1)}{2}\right)^{2}\right) \\
& =\frac{2^{2}}{n} \cdot \frac{n(n+1)}{2}\left(\frac{(2 n+1)}{3}-\frac{(n+1)}{2}\right) \\
& =2(n+1)\left(\frac{4 n+2-3 n-3}{6}\right)
\end{aligned}
$$

$=\frac{\mathrm{n}^{2}-1}{3}$
\therefore Statement (1) is false
89. Statement $-1: \sim(p \leftrightarrow \sim q)$ is equivalent to \ldots

Ans: Statement -1 is true and Statement - 2 is false

Sol: Truth table for $\sim(p \leftrightarrow \sim q)$

p	q	$\sim \mathrm{q}$	$\mathrm{p} \leftrightarrow \sim \mathrm{q}$	$\sim(\mathrm{p} \leftrightarrow \sim \mathrm{q})$	$\mathrm{p} \leftrightarrow \mathrm{q}$
T	T	F	F	T	T
T	F	T	T	F	F
F	T	F	T	F	F
F	F	T	F	T	T

\therefore Statement I is true and II is false
90. Let A be a 2×2 matrix

Ans: Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement-1

Sol: For a 2×2 matrix indeed $|\operatorname{adj} \mathrm{A}|=|\mathrm{A}|$ Since $|\operatorname{adj} A|=|A|^{n-1}$, where n is the order of the matrix

Statement 2 is true
In general, for a $\mathrm{n}^{\text {th }}$ order matrix, adj (adj A) $\neq \mathrm{A}$.
But for a 2×2 matrix $\operatorname{adj}(\operatorname{adj} \mathrm{A})=\mathrm{A}$
Statement 1 true
But Statement 1 does not follow from Statement 2

