Q. 1. Which one of the following is the correct statement?
i. Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase.
ii. $\quad B_{2} \mathrm{H}_{6} .2 \mathrm{NH}_{3}$ is known as 'inorganic benzene'.
iii. Boric acid is a protonic acid.
iv. Beryllium exhibits coordination number of six.

Ans:- 2
Q. 2. The treatmane of $\mathrm{CH}_{3} \mathrm{M}_{3} \mathrm{X}$ with $\mathrm{CH} 3 \mathrm{C}=\mathrm{C}-\mathrm{H}$ produce

```
ccc
ii. CH
iii. CH, -CH=CH,
iv. CH,C=C-CH,
```

Sol: 2
Q. 3. The correct decreasing order of priority for the functional groups of organic compounds in the IUPAC system of nomenclature is
i. $-\mathrm{CHO},-\mathrm{COOH},-20, \mathrm{H},-\mathrm{CONH}$
ii. $\mathrm{CONH}_{1}-\mathrm{CHO},-\mathrm{SO} \mathrm{H}-\mathrm{COOH}$.
iii. - COOH, $-5 O_{3} \mathrm{H},-\mathrm{CONH}_{2}$ - CHO
iv. $-\mathrm{SO}_{3} \mathrm{H},-\mathrm{SOOH}$, , $\mathrm{COMH}_{2}-\mathrm{CHO}$.

Sol:- 3
Q. 4. The pK_{a} of a weak acid, HA is 4.80. The pK_{b} of a weak base, BOH , is 4.78. The pH of an aqueous solution of the corresponding salt, BA, will be
i. $\quad 7.01$
ii. 9.22
iii. 9.58
iv. 4.79

Sol: 1
Q. 5.The hydrocarbon which can react with sodium in liquid ammonia is

```
i. CH3CH=CHCH
ii. CH3}\mp@subsup{\textrm{CH}}{2}{}\mathbf{C=CCH}\mp@subsup{\textrm{CH}}{3}{
iii. CH3CH2C=CCH2CH2CH,
iv. CH
```

Sol: 4
Q. 6.

 $\mathrm{Cr}\left|\mathrm{Cr}^{2+}(\mathrm{O} . \mathrm{M})\right| \mathrm{Ft}(\mathrm{O} .01 \mathrm{M}) \mathrm{Ft}$

i. $\quad-0.339 \mathrm{~V}$
ii. $\quad-0.26 \mathrm{~V}$
iii. $\quad 0.26 \mathrm{~V}$
iv. $\quad 0.339 \mathrm{~V}$

Sol: 3
Q. 7. Amount of oxalic acid present in a solution can be determined by its titration with KMnO_{4} solution in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$. The titration gives unsatisfactory result when carried out in the presence of HCl , because HCl
i. reduces permanganate to Mn^{2+}.
ii. oxidises oxalic acid to carbon dioxide and water.
iii. gets oxidised by oxalic acid to chlorine.
iv. furnishes H^{+}ions in addition to those from oxalic acid.

Sol: 1.
Q. 8. Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is
i. $\quad \mathrm{R}_{2} \mathrm{SiCl}_{2}$
ii. $\quad \mathrm{R}_{3} \mathrm{SiCl}$
iii. $\quad R_{4} S i$
iv. RSiCl_{3}

Sol: 4
Q. 9. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:

$$
\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\frac{1}{2} \Delta_{\mathrm{diss}} \mathrm{H}^{\ominus}} \mathrm{Cl}(\mathrm{~g}) \xrightarrow{\Delta_{\mathrm{ag}} \mathrm{H}^{\ominus}} \mathrm{Cl}^{-}(\mathrm{g}) \xrightarrow{\Delta \mathrm{hyd} \mathrm{H}^{\ominus}} \mathrm{Cl}^{-}(\mathrm{aq})
$$

The energy involved in the conversion of
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})$ to $\mathrm{Cl}^{-}(\mathrm{aq})$
(using the data, $\Delta_{\text {diss }} \mathrm{H}_{\mathrm{Cl}_{2}}^{\Theta}=240 \mathrm{Kj} \mathrm{mol}^{-1} \Delta_{\text {eg }} \mathrm{H}_{\mathrm{Cl}}^{\ominus}=-349 \mathrm{kj} \mathrm{mol}^{-1}, \Delta$ hyd $\mathrm{H}_{\mathrm{Cr}^{-}}=-381 \mathrm{KJ} \mathrm{mol}^{-1}$, will be
i. $\quad-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
ii. $\quad+120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
iii. $\quad+152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
iv. $\quad-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Sol: 4
Q. 10. Which of the following factors is of no significance for roasting sulphide ores to the oxides and not subjecting the sulphide ores to carbon reduction directly?
i. Metal sulphides are less stable than the corresponding oxides.
ii. $\quad \mathrm{CO}_{2}$ is more volatile than CS_{2}.
iii. Metal sulphides are thermodynamically more stable than CS_{2}.
iv. CO_{2} is thermodynamically more stable than CS_{2}.

Sol: 1
Q. 11. Four species are listed below:

```
i. }\mp@subsup{\textrm{HCO}}{\mathbf{-}}{-
ii. }\mp@subsup{\boldsymbol{H}}{\mathbf{3}}{}\mp@subsup{\boldsymbol{O}}{}{+
iii. HCO-
iv. }\mp@subsup{\textrm{HEO}}{3}{}\textrm{F
```

Which one of the following is the correct sequence of their acid strength?
(1) (() < (iii) < (ii) < (iv) (2) (iii) < (i) < (iv) < (ii) (3) (iv) < (ii) < (iii) < (i) (4) (ii) < (iii) < (i) < (iv)

Sol: 1
Q. 12. Which one of the following constitutes a group of the isoelectronic species?
i. $C N^{-}, M^{4}, O_{2}^{-4}, G_{4}^{4}$
ii. $\quad N^{4}, O_{i}^{-}, \Delta O^{+}, C O$
iii. $C_{\mathbf{2}}^{-4} \cdot O_{\mathbf{1}}^{+4} \cdot C D .100$
iv. $\boldsymbol{N O}, \boldsymbol{C}_{\mathbf{2}}, C N . \mathrm{M}_{\mathbf{4}}$

Sol: 4
Q. 13. Phenol, when it first reacts with concentrated sulphuric acid and then with concentrated nitric acid, gives
i. p-nitrophenol
ii. nitrobenzene
iii. 2,4,6-trinitrobenzene
iv. o-nitrophenol

Sol: 4
Q. 14. The ionization enthalpy of hydrogen atom is $1.312 \times 10^{6} \mathrm{~J} \mathrm{~mol}^{-1}$. The energy required to excite the electron in the atom from $n=1$ to $n=2$ is

i.
 $7.56 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-4}$

ii. $\quad 9.84 \times 10^{3} \mathrm{~J} \mathrm{~mol}$
iii. $8.51 \times 13^{5} \mathrm{~J} \mathrm{~mol}^{-1}$
iv. $6.56 \times 10^{3} \mathrm{~J} \mathrm{~mol}^{-4}$

Sol: 2
Q. 15. The organic chloro compound, which shows complete stereochemical inversion during a $\mathrm{S}_{\mathrm{N}} 2$ reaction, is
i. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCl}$
ii. $\mathrm{CH}_{3} \mathrm{Cl}$
iii. $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{CHCl}$
iv. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$

Sol: 2
Q. 16. Toluene is nitrated and the resulting product is reduced with tin and hydrochloric acid. The product so obtained is diazotized and then heated with cuprous bromide. The reaction mixture so formed contains
i. mixture of o-; and p-bromoanilines
ii. mixture of o - and m -bromotoluenes
iii. mixture of o - and p -bromotoluenes
iv. mixture of o - and p -dibromobenzenes

Sol: 3
Q. 17. In the following sequence of reactions, the alkene affords the compound ' B '

$\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3} \xrightarrow{\rightarrow} \mathrm{~A} \xrightarrow{\mathrm{C}} \mathrm{B}$

2u
The compound B is
i. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{3}$
ii. $\mathrm{CH}_{3} \mathrm{CHO}$
iii. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$
iv. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Sol: 2
Q. 18. Which one of the following pairs of species have the same bond order?
i. O_{3}^{-}and CN^{-}
ii. $\mathbf{N O}^{+}$and CN+
iii. CNF^{-1} and NO^{+}
iv. CN^{-}and CN^{+}

Sol: 3
Q. 19. At $80^{\circ} \mathrm{C}$, the vapour pressure of pure liquid ' A ' is 520 mm Hg and that of pure liquid ' B ' is 1000 mm Hg . If a mixture solution of ' A ' and ' B ' boils at $80^{\circ} \mathrm{C}$ and 1 atm pressure, the amount of ' A ' in the mixture is (1 atm $=760 \mathrm{~mm} \mathrm{Hg}$)
i. $\quad 48 \mathrm{~mol}$ percent
ii. $\quad 50 \mathrm{~mol}$ percent
iii. 52 mol percent
iv. 34 mol percent

Sol: 2
Q. 20. For a reaction $\frac{\mathbf{1}}{\mathbf{2}} \rightarrow \mathbf{2 \boldsymbol { B }}$, rate of disappearance of 'A' is related to the rate of appearance of 'B' by the expression

Sol: 4
Q. 21. The equilibrium constants $\boldsymbol{K}_{\boldsymbol{p}} \boldsymbol{m d} \boldsymbol{K}_{\mathbf{p}}$ for the reactions $\boldsymbol{X} \leftrightarrow \mathbf{2} \mathbf{Z}$ ard $\mathbb{Z} \leftrightarrow \boldsymbol{P}+\boldsymbol{Q}$ respectively are in the ratio of $1: 9$. If the degree of dissociation of X and Z be equal then the ratio of total pressures at these equilibria is
i. 1:3
ii. $1: 9$
iii. $1: 36$
iv. $1: 1$

Sol: 3
Q. 22. In context with the industrial preparation of hydrogen from water gas $\left(\mathrm{CO}+\mathrm{H}_{2}\right)$, which of the following is the correct statement?
i. $\quad \mathrm{H}_{2}$ is removed through occlusion with Pd .
ii. CO is oxidised to CO_{2} with steam in the presence of a catalyst followed by absorption of CO_{2} in alkali.
iii. CO and H_{2} are fractionally separated using differences in their densities.
iv. CO is removed by absorption in aqueous $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ Solution.

Sol: 2
Q. 23. In which of the following octahedral complexes of Co (atomic number 27), will the magnitude of $\boldsymbol{\Delta}_{\boldsymbol{\bullet}}$ be the highest?
i. $\quad\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}{ }^{\mathrm{F}}{ }^{+}\right.$
ii. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{\mathrm{P}}\right.$ $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-}$
$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{-}$
Sol: 3
Q. 24. The coordination number and the oxidation state of the element ' E ' in the complex $\left[\boldsymbol{F}(\mathbf{N W})_{\mathbf{2}}\left(\boldsymbol{C}_{\mathbf{2}} \mathrm{O}_{\mathbf{4}}\right)\right]_{\mathbf{N}}^{\mathbf{2}}$ (where (en) is ethylene diamine) are, respectively,
i. 4 and 3
ii. 6 and 3
iii. 6 and 2
iv. 4 and 2

Sol: 2
Q. 25. Identify the wrong statement in the following:
i. Ozone layer does not permit infrared radiation from the sun to reach the earth.
ii. Acid rain is mostly because of oxides of nitrogen and sulphur.
iii. Chlorofluorocarbons are responsible for ozone layer depletion.
iv. Greenhouse effect is responsible for global warming.

Sol: c1
Q. 26. Larger number of oxidation states are exhibited by the actinoids than those by lanthanoids, the main reason being
i. more energy difference between $5 f$ and $6 d$ than between $4 f$ and $5 d$ orbitals.
ii. more reactive nature of the actinoids than the lanthanoids.
iii. $4 f$ orbitals more diffused than the $5 f$ orbitals.
iv. lesser energy difference between $5 f$ and $6 d$ than between $4 f$ and $5 d$ orbitals.

Sol: 4
Q. 27. In a compound, atoms of element Y form ccp lattice and those of element X occupy $2 / 3^{\text {rd }}$ of tetrahedral voids. The formula of the compound will be
i. $\quad X_{2} Y$
ii. $\quad X_{3} Y_{4}$
iii. $\quad X_{4} Y_{3}$
iv. $\quad X_{2} Y_{3}$

Sol: 3
Q. 28. Gold numbers of protective colloids (A), (B), (C) and (D) are 0.50, 0.01, 0.10 and 0.005 , respectively. The correct order of their protective powers is
i. $\quad(\mathrm{A})<(\mathrm{C})<(\mathrm{B})<(\mathrm{D})$
ii. $\quad(\mathrm{B})<(\mathrm{D})<(\mathrm{A})<(\mathrm{C})$
iii. $\quad(\mathrm{D})<(\mathrm{A})<(\mathrm{C})<(\mathrm{B})$
iv. $\quad(\mathrm{C})<(\mathrm{B})<(\mathrm{D})<(\mathrm{A})$

Sol:1
Q. 29. The vapour pressure of water at $20^{\circ} \mathrm{C}$ is 17.5 mm Hg . If 18 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{O}_{6}\right)$ is added to 178.2 g of water at $20^{\circ} \mathrm{C}$, the vapour pressure of the resulting solution will be
i. $\quad 16.500 \mathrm{~mm} \mathrm{Hg}$
ii. $\quad 17.325 \mathrm{~mm} \mathrm{Hg}$
iii. $\quad 17.675 \mathrm{~mm} \mathrm{Hg}$
iv. $\quad 15.750 \mathrm{~mm} \mathrm{Hg}$

Sol: 2
Q. 30. Bakelite is obtained from phenol by reacting with
i. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
ii. HCHO
iii. $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2}$
iv. $\mathrm{CH}_{3} \mathrm{CHO}$

Sol: 2
Q. 31. The absolute configuration of is

i. R, S
ii. $\quad S, R$
iii. S, S
iv. R, R

Sol: 4
Q. 32. For the following three reactions a, b, c, equilibrium constants are given:
a. $\boldsymbol{C O}(\mathcal{B})+\boldsymbol{H}_{1} O(g) \leftrightarrow \boldsymbol{C O}(\boldsymbol{O})+\boldsymbol{H}_{1}(\mathcal{B}): \boldsymbol{K}_{1}$
b. $\left.\mathrm{CF}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{COI}_{\mathrm{I}}\right)+3 \mathrm{H}_{2}(\mathrm{~g}) ; \boldsymbol{Z}_{2}$
c. $\mathrm{CH}_{4}(\mathrm{~g})+\mathbf{2 H} \mathrm{H} \boldsymbol{O}(\mathrm{g}) \leftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{4} \mathrm{H}_{\mathbf{2}}(\mathrm{l}) ; \mathrm{K}_{\mathbf{3}}$

Which of the following relations is correct?
i. $\boldsymbol{K}_{\mathbf{3}}=\boldsymbol{K}_{\mathbf{1}} \boldsymbol{K}_{\mathbf{1}}$
ii. $\boldsymbol{K}_{\mathbf{3}} \boldsymbol{K}_{\mathbf{2}}^{\mathbf{3}}-\boldsymbol{K}_{\boldsymbol{4}}^{\mathbf{2}}$
iii. $\boldsymbol{K}_{1} \sqrt{\boldsymbol{K}_{2}}=\boldsymbol{K}_{\mathbf{3}}$
iv. $\boldsymbol{K}_{\mathbf{1}} \boldsymbol{K}_{\mathbf{2}}=\boldsymbol{K}_{\mathbf{1}}$

Sol: 1
Q. 33. Standard entropy of $\mathrm{X} 2, \mathrm{Y} 2$ and XY 3 are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively.

For the reaction, $\frac{\mathbf{1}}{\mathbf{2}} \boldsymbol{X}_{\mathbf{a}}+\frac{\mathbf{3}}{\mathbf{2}} \boldsymbol{Y}_{\mathbf{2}} \rightarrow \boldsymbol{X} \mathbf{Y}_{\mathbf{2}}, \Delta \boldsymbol{A} \boldsymbol{f}=-\mathbf{3 0} \boldsymbol{K J}$, to be at equilibrium, the temperature will be
i. $\quad 750 \mathrm{~K}$
ii. $\quad 1000 \mathrm{~K}$
iii. $\quad 1250 \mathrm{~K}$
iv. 500 K

Sol: 1
Q. 34. The electrophile, ${ }^{-}$attacks the benzene ring to generate the intermediate $\boldsymbol{\sigma}-$ complex. Of the following, which $v-$ complex is of lowest energy?
i.

ii.

iv.

Sol: 4
Q. 35. $\alpha-\mathrm{D}-(+)-$ glucose and $\beta-\mathrm{D}-(+)-$ Glucose are
i. anomers
ii. enantiomers
iii. conformers
iv. epimers

Sol: 1

