Q. 1. The mean of the numbers $a, b, 8,5,10$ is 6 and the variance is 6.80 . Then which one of the following gives possible values a and b ?
i. $\quad a=1, b=6$
ii. $\quad a=3, b=4$
iii. $\quad a=0, b=7$
iv. $\quad a=5, b=2$
sol: 2
Q. 2. The vector $\overrightarrow{\mathbf{c}}=\boldsymbol{a r}+\mathbf{2}+\boldsymbol{f}$ lies in the plane of the vectors $\boldsymbol{E}=\boldsymbol{I}+\boldsymbol{J}$ and $\mathbf{+ \boldsymbol { \epsilon }} \mathbf{=} \boldsymbol{J}+\boldsymbol{E}$ and bisects the angle between \boldsymbol{b} ave $\boldsymbol{\epsilon}$. Then which one of the following gives possible values of $\boldsymbol{x} \boldsymbol{\pi} \boldsymbol{f}$
i. $\boldsymbol{a}=\mathbf{2}, \boldsymbol{\beta}=\mathbf{1}$
ii. $\quad \boldsymbol{a}=1, \beta=1$
iii. $\quad \boldsymbol{x}=2, \beta=2$
iv. $\boldsymbol{\sigma}=\boldsymbol{1}, \boldsymbol{\beta}=2$

Sol. 2
Q. 3.

Thav the angh batroax \vec{e} and \vec{c} is

	$\frac{\pi}{2}$
i.	$\frac{2}{\pi}$
iii.	0
ii.	$\frac{\pi}{4}$
iv.	$\mathbf{4}$

Sol. 2
Q. 4. The line passing through the points $(5,1, a)$ and $(3, b, 1)$ crosses the yz-plane at the point $\left(0, \frac{17}{2}, \frac{-1 \mathbf{3}}{2}\right) \cdot \boldsymbol{T u N}$
i. $\quad a=6, b=4$
ii. $\quad a=8, b=2$
iii. $\quad a=2, b=8$
iv. $\quad a=4, b=6$

Sol. 1
Q. 5. If the straight lines $\frac{\pi-1}{k}=\frac{y-2}{2}=\frac{x-3}{3} \operatorname{ard} \frac{x-2}{3}=\frac{y-3}{k}=\frac{x-1}{2}$ intersect at a point, then the integer k is equal to
i. 2
ii. 2
iii. 5
iv. 5

Sol. 3
Q. 6. The differential of the family of circles with fixed radius 5 units and centre on the line $y=2$ is
i. $(y-2)^{4} y^{4}-25-(y-2)^{4}$
ii. $\quad(x-2)^{4} y^{14}=25-(y-2)^{4}$
iii. $\quad(x-2) y^{41}=25-(y-2)^{9}$
iv. $(y-2) y^{4}=25-(y-2)^{2}$

Sol. 1
Q. 7. Let a, b, c be any real numbers. Suppose that there are real numbers x, y, z not all

i. 0
ii. 1
iii. 2
iv. - 1

Sol. 2
Q. 8. Let A be a square matrix all of whose entries are integers. Then which one of the following is true?

ii. $\quad f$ det $A= \pm 1$, then A^{-1} mod not extrs

iv. $\quad f$ dot $A=1$, shon A^{-1} axim and an itr antries are nom - int agon

Sol. 1
Q. 9. The quadratic equations $\boldsymbol{\pi}^{\mathbf{2}} \mathbf{-} \mathbf{6 \pi} \boldsymbol{\pi} \mathbf{= 0} \mathbf{0} \mathbf{a n} \boldsymbol{\pi}^{\mathbf{2}}-\mathbf{e x}+\mathbf{6} \boldsymbol{=} \mathbf{0}$ and have one root in common. The other roots of the first and second equations are integers in the ratio $4: 3$. Then the common root is
i. 3
ii. 2
iii. 1
iv. 4

Sol. 2
Q. 10. How many different words can be formed by jumbling the letters in the word MISSISSIPPI in which no two S are adjacent?

$$
\begin{array}{ll}
\text { i. } & 6.8^{7} C_{4} \\
\text { ii. } & 7 .^{4} C_{4} \cdot{ }^{4} C_{4} \\
\text { iii. } & 8 .^{4} C_{4} \cdot{ }^{7} C_{4} \\
\text { iv. } & 6.7^{.4} C_{4}
\end{array}
$$

Sol. 2
Q. 11.

i. $\quad t<\frac{2}{3} \operatorname{and} J>2$
ii. $\quad \ll \frac{2}{3} \operatorname{and} J<2$
iii. $\quad l>\frac{2}{3} \operatorname{and} J>2$
iv. $\quad\left\langle<\frac{2}{3} \operatorname{ard} J>2\right.$

Sol. 4
Q. 12.The area of the plane region bounded by the curve $x+2 y^{2}=0$ and $3 y^{2}-1$ in aquad to
i. $\frac{2}{3}$
ii. $\frac{4}{3}$
iii. $\frac{5}{3}$
iv. $\frac{1}{3}$

Sol. 2
Q. 13.

The valued af $\sqrt{2} \int \frac{\dot{\sin } x d x}{\sin \left(x-\frac{\pi}{4}\right)}$ is
i. $\quad x+\log \left\lvert\, \sin \left(x-\frac{\pi}{4}\right)+e\right.$

$$
\begin{array}{ll}
& x-\log \left\lvert\, \cos \left(x-\frac{\pi}{4}\right)\right. \\
\text { ii. } & +c \\
\text { iii. } & \left.x+\log \cos \left(x-\frac{\pi}{4}\right) \right\rvert\,+c \\
\text { iv. } & x-\log \left\lvert\, \sin \left(x-\frac{\pi}{4}\right)+c\right.
\end{array}
$$

Sol. 1
Q. 14. The statament $p \rightarrow(q \rightarrow p)$ is aquivitue to

$$
\begin{array}{ll}
\text { i. } & p \rightarrow(p \wedge q) \\
\text { ii. } & p \rightarrow(p \leftrightarrow q) \\
\text { iii. } & p \rightarrow(p \rightarrow q) \\
\text { iv. } & p \rightarrow(p \vee q)
\end{array}
$$

Corredt answer is (4)
Q. 15.

The vated af cot $\left(\cos ^{-4} \frac{5}{3}+\tan ^{-2} \frac{2}{3}\right) d$
i. $\frac{4}{17}$
ii. $\frac{5}{17}$
iii. $\frac{6}{17}$
iv. $\frac{3}{17}$

Sol. 3
Q. 16. Let A be a 2×2 matrix with real entries. Let I be the 2×2 identity matrix. Denote by $\operatorname{tr}(\mathrm{A})$, the sum of diagonal entries of A.

Assume that $\mathrm{A}^{2}=1$

Slatomane $-1: \delta \quad A \neq 1$ and $A \neq-1$, then dot $A=-1$.

i. Statement-1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1.
ii. Statement-1 is true, Statement-2 is false
iii. Statement-1 is false, Statement-2 is true.
iv. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

Sol. 2

Q. 17. Let p be the statement ' x is an irrational number", q be the statement " y is a transcendental number", and r be the statement " x is a rational number iff y is a transcendental number".

Statement-1: r is equivalent to either q or p.

Slatamenet-2: r is equivalone lo $\sim(p \leftrightarrow \sim q)$

i. Statement-1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1.
ii. Statement-1 is true, Statement-2 is false.
iii. Statement-1 is false, Statement-2 is true.
iv. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol. non
Q. 18. In a shop there are five types of ice-creams available. A child buys six icecreams.

Statement-1: The number of different ways the child can buy the six ice-creams is ${ }^{\mathbf{m}} \boldsymbol{C}_{\mathbf{y}}$ Statement-2: The number of different ways the child can buy the six ice-creams is equal to the number of different ways of arranging 6 A's and 4 B's in a row.
i. Statement-1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1.
ii. Statement-1 is true, Statement-2 is false.
iii. Statement-1 is false, Statement-2 is true.
iv. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol. 3
Q. 19.

Statement - $2 \sum_{r=0}^{1}(r+1)^{\prime} C_{r} x^{\prime}-(1+x)^{\prime}-n x(1+x)^{n-1}$
i. Statement-1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1.
ii. Statement-1 is true, Statement-2 is false.
iii. Statement-1 is false, Statement-2 is true.
iv. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol. 4
Q. 20.

Shatamave - 1: For avary matural number $n \geq 2, \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}+\ldots \ldots+\frac{1}{\sqrt{2}}>\sqrt{n}$
Shatemank 1: Nor avery nacural number $n \geq 2, \sqrt{n(n+1)}<n+1$
i. Statement-1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1.
ii. Statement-1 is true, Statement-2 is false.
iii. Statement-1 is false, Statement-2 is true.
iv. Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Sol. 4
Q. 21.

The corlugate of a comples mumber is $\frac{1}{1-1}$.

Then that somplex nember its

i. $\frac{-1}{1+1}$
ii. $\quad \frac{1}{i-1}$
iii. $\frac{-1}{1-1}$
iv. $\frac{1}{1+1}$

Sol. 1
Q. 22.Let R be the real line. Consider the following subsets of the plane
$S=\{(x y) y=x+1$ and $0<x<2\}$
$T=\{(x, y) x-y$ is avint agerl $\}$
Which one of the following is true?
i. $\quad S$ is an equivalence relation on R but T is not
ii. $\quad \mathrm{T}$ is an equivalence relation on R but S is not
iii. Neither S nor T is an equivalence relation on R
iv. Both S and T are equivalence relations on R

Sol: 2
Q. 23.
$L \in f: N \rightarrow Y$ be a function difued or $f(x)=4 x+3$, where Y
$-\{y \in M: y=4 x+3$ Gormen $x \in N\}$
Sene dhat f inimprithe and in innerm in

Sol: 2
Q. 24. $A B$ is a vertical pole with B at the ground level and A at the top. A man finds that the angle of elevation of the point A from a certain point C on the ground is $60^{\circ} \mathrm{He}$ moves away from the pole along the line $B C$ to a point D such that $C D=7 \mathrm{~m}$. From D the angle of elevation of the point A is 45°. Then the height of the pole is.
i. $\frac{7 \sqrt{3}}{2}(\sqrt{3}-1) m$
ii. $\quad \frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3}+1} m$
iii. $\quad \frac{7 \sqrt{3}}{2} \frac{1}{\sqrt{3-1}} m$
iv. $\frac{7 \sqrt{3}}{2}(\sqrt{3}+1) m$

Sol: 4
Q. 25. A die is thrown. Let A be the event that the number obtained is greater than 3. Let B be the event that the number obtained is less than 5. Then $\boldsymbol{P}(\boldsymbol{A} \cup \boldsymbol{B})$ is
i. 1
ii. $\frac{2}{5}$
iii. $\frac{3}{5}$
iv. 0

Sol: 1
Q. 26. It is given that the events A and B are such that
$P(A)=\frac{1}{4}, P(A \mid B)=\frac{1}{2} \operatorname{and} P(B \mid A)=\frac{2}{3}$. Thave $P(B) \operatorname{la}$
i. $\frac{2}{3}$
ii. $\frac{1}{2}$
iii. $\frac{1}{6}$
iv. $\frac{1}{3}$

Sol: 4
Q. 27. A focus of an ellipse is at the origin. The directrix is the line $x=4$ and the eccentricity is $\frac{1}{2}$. Then the length of the semi-major axis is
i. $\quad \frac{4}{3}$
ii. $\frac{5}{3}$
i. $\frac{8}{3}$
iv. $\frac{2}{3}$

Sol: 3
Q. 28. A parabola has the origin as its focus and the line $x=2$ as the directrix. Then the vertex of the parabola is at
i. $(0,1)$
ii. $(2,0)$
iii. $(0,2)$
iv. $(1,0)$

Sol: 1

Q. 29. The point diametrically opposite to the point $P(1,0)$ on the circle $\boldsymbol{x}^{\mathbf{2}}+\boldsymbol{y}^{\mathbf{2}}+\mathbf{2 x + 4} \mathbf{y}-\mathbf{3}=0 \mathrm{~m}$
i. $(-3,-4)$
ii. $(3,4)$
iii. $(3,-4)$
iv. $(-3,4)$

Sol: 1
Q. 30. The perpendicular bisector of the line segment joining $p(1,4)$, and $Q(k, 3)$, has y -intercept -4 . Then a possible value of k is
i. - 2
ii. - 4
iii. 1
iv. 2

Sol: 1
Q. 31. The first two terms of a geometric progression add up to 12 . The sum of the third and the fourth terms is 48 . If the terms of the geometric progression are alternately positive and negative, then the first term is
i. 12
ii. 4
iii. - 4
iv. $\quad-12$

Sol: 4
Q. 32. Suppose the cubic $\mathrm{x}^{3}-\mathrm{px}+\mathrm{qhas}$ three distinct real roots where $\mathrm{p}>0$ and $\mathrm{q}>0$. Then which one of the following holds?
i.

The cutic nin ina ac bokk $\frac{1 P}{\sqrt{3}}$ and $-\sqrt{\frac{P}{3}}$
The cubic max inna at both $\sqrt{\frac{P}{3}}$ and $-\sqrt{\frac{P}{3}}$
iii.

The aubic rin ina at \sqrt{P} and moxima at $-\sqrt{\frac{P}{5}}$
The cutic rin inva $-\sqrt{\frac{P}{3}}$ and maxime at $\sqrt{\frac{P}{3}}$
Sol: 3
Q. 33. How many real solutions does the
equation $x^{7}+14 x^{3}+16 x^{3}-30 x-560=0$ hawe?
i. 3
ii. 5
iii. 7
iv. 1

Sol: 4
Q. 34.

i. $\quad f$ is differentiable at $x=0$ but not at $x=1$
ii. $\quad f$ is differentiable at $x=1$ but not at $x=0$
iii. f is neither differentiable at $x=0$ nor at $x=1$
iv. f is differentiable at $x=0$ and at $x=1$

Sol: 1
Q. 35. The solution of the differential equation $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{x}}=\frac{\boldsymbol{\pi}+\boldsymbol{y}}{\boldsymbol{x}}$ satisfying the condition y (1) $=$ 1 is

$$
\begin{array}{ll}
\text { i. } & \boldsymbol{y}=\boldsymbol{\pi} \boldsymbol{e}^{(\mathbf{1 - 1})} \\
\text { ii. } & y=x \ln x+x \\
\text { iii. } & y=\ln x+x \\
\text { iv. } & \boldsymbol{y}=\boldsymbol{x} \ln \boldsymbol{x}+\boldsymbol{x}^{\mathbf{2}}
\end{array}
$$

Sol: 4

