AIEEE-CBSE-ENG-03

A function f from the set of natural numbers to integers defined by

when is odd gaeal. blogspot.com when n is even

- (A) one-one but not onto
 - (B) onto but not one-one
- (C) one-one and onto both
- (D) neither one-one nor onto
- Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex. Further, assume 2. that the origin, z₁ and z₂ form an equilateral triangle, then
 - (A) $a^2 = b$

(B) $a^2 = 2b$

(C) $a^2 = 3b$

- (D) $a^2 = 4b$
- If z and ω are two non-zero complex numbers such that $|z\omega| = 1$, and Arg (z) Arg (ω) = $\frac{\pi}{2}$, 3.

then $\overline{z}\omega$ is equal to

(A) 1

(B) - 1

(C) i

(D) - i

- If $\left(\frac{1+i}{1-i}\right)^x = 1$, then 4.
 - (A) x = 4n, where n is any positive integer
 - (B) x = 2n, where n is any positive integer
 - (C) x = 4n + 1, where n is any positive integer
 - (D) x = 2n + 1, where n is any positive integer
- If $|b \quad b^2 \quad 1 + b^3| = 0$ and vectors (1, a, a^2) (1, b, b^2) and (1, c, c^2) are non-coplanar, then the 5.

product abc equals

(A) 2

(B) - 1

(C) 1

- (D) 0
- 6. If the system of linear equations

x + 2ay + az = 0

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c

(A) are in A. P.

(B) are in G.P.

(C) are in H.P.

- (D) satisfy a + 2b + 3c = 0
- If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the 7. squares of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in
 - (A) arithmetic progression

(B) geometric progression

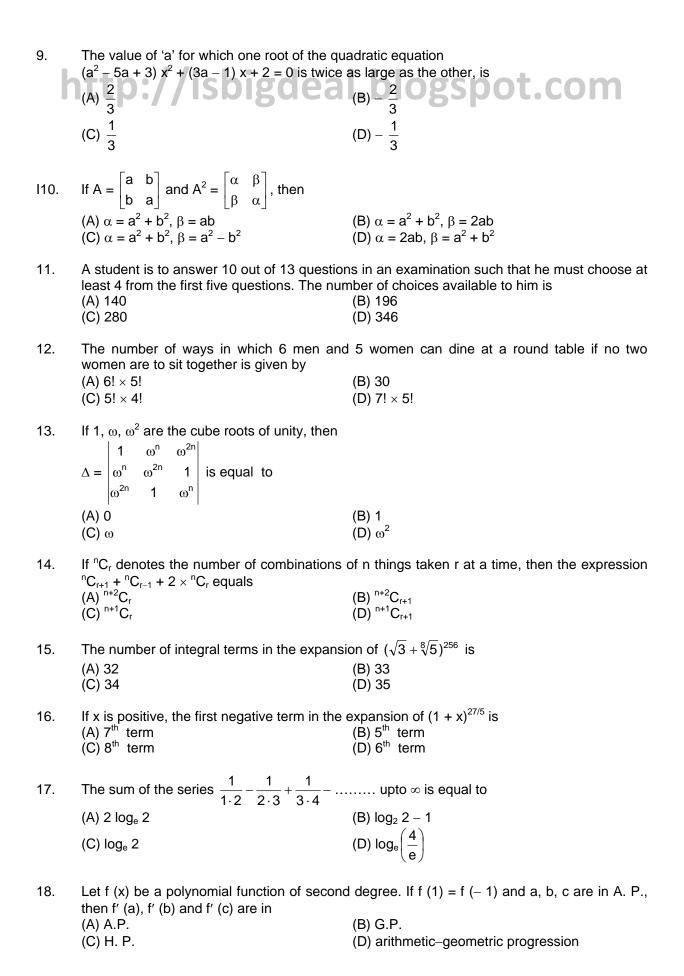
(C) harmonic progression

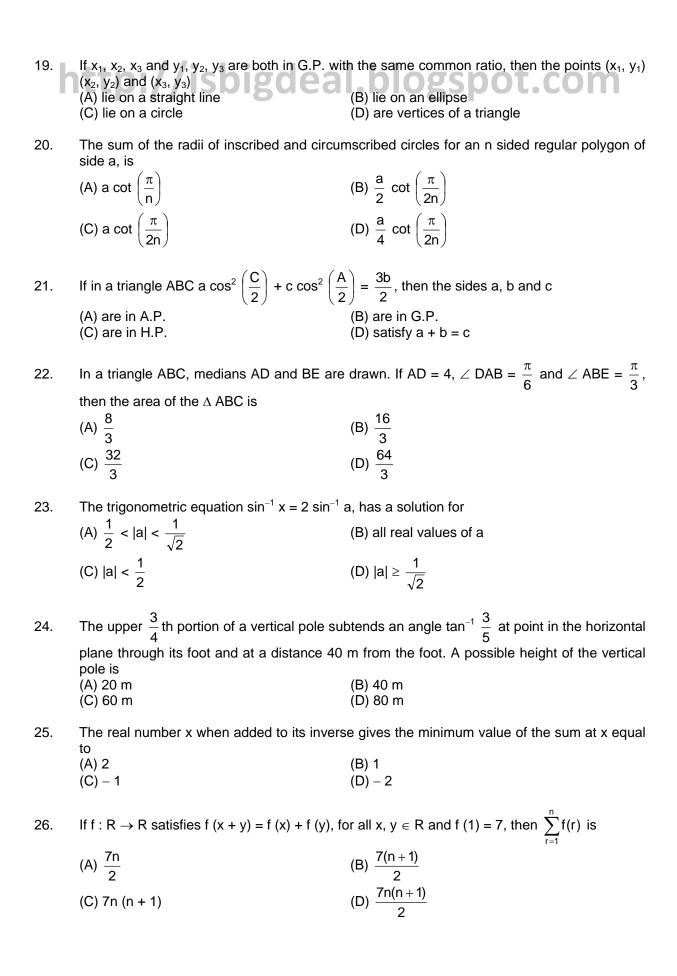
- (D) arithmetic-geometric-progression
- The number of real solutions of the equation $x^2 3|x| + 2 = 0$ is 8.
 - (A) 2

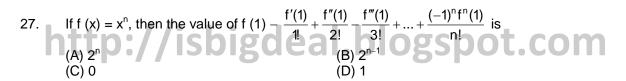
(B) 4

(C) 1

(D) 3







- 28. Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 x)$, is
 - (A)(1, 2)

(B) $(-1, 0) \cup (1, 2)$

(C) $(1, 2) \cup (2, \infty)$

- (D) $(-1, 0) \cup (1, 2) \cup (2, \infty)$
- $29. \qquad \lim_{x \to \pi/2} \frac{\left[1 \tan\left(\frac{x}{2}\right)\right] \left[1 \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi 2x\right]^3} \ \, \text{is}$
 - (A) $\frac{1}{8}$

(B) 0

(C) $\frac{1}{32}$

- (D) ∞
- 30. If $\lim_{x\to 0} \frac{\log(3+x) \log(3-x)}{x} = k$, the value of k is
 - (A) 0

(B) $-\frac{1}{3}$

(C) $\frac{2}{3}$

- (D) $-\frac{2}{3}$
- 31. Let f(a) = g(a) = k and their n^{th} derivatives $f^n(a)$, $g^n(a)$ exist and are not equal for some n. Further if $\lim_{x\to a} \frac{f(a)g(x)-f(a)-g(a)f(x)+g(a)}{g(x)-f(x)} = 4$, then the value of k is
 - (A) 4

(B)2

(C) 1

- (D) 0
- 32. The function f (x) = log (x + $\sqrt{x^2 + 1}$), is
 - (A) an even function

(B) an odd function

(C) a periodic function

- (D) neither an even nor an odd function
- 33. If $f(x) = \begin{cases} xe^{-\left(\frac{1}{|x|} + \frac{1}{x}\right)}, & x \neq 0 \text{ then } f(x) \text{ is } \\ 0, & x = 0 \end{cases}$
 - (A) continuous as well as differentiable for all x
 - (B) continuous for all x but not differentiable at x = 0
 - (C) neither differentiable nor continuous at x = 0
 - (D) discontinuous everywhere
- 34. If the function $f(x) = 2x^3 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals
 - (A)3

(B) 1

(C)2

(D) $\frac{1}{2}$

35. If
$$f(y) = e^y$$
, $g(y) = y$; $y > 0$ and $F(t) = \int_0^t f(t - y) g(y) dy$, then

(A) $F(t) = 1 - e^{-t} (1 + t)$

(B) $F(t) = e^t - (1 + t)$

36. If
$$f(a + b - x) = f(x)$$
, then $\int_a^b x f(x) dx$ is equal to

(A) $\frac{a+b}{2}\int_{a}^{b} f(b-x)dx$

(B) $\frac{a+b}{2}\int_{a}^{b} f(x)dx$

(C) $\frac{b-a}{2}\int_{a}^{b} f(x)dx$

(D) $\frac{a+b}{2}\int_{0}^{b}f(a+b-x)dx$

37. The value of
$$\lim_{x\to 0} \frac{\int_{0}^{x^2} \sec^2 t \, dt}{x \sin x}$$
 is

(B) 2

(C) 1

(D) 0

38. The value of the integral
$$I = \int_{0}^{1} x (1 - x)^{n} dx$$
 is

(A) $\frac{1}{n+1}$

(B) $\frac{1}{n+2}$

(C) $\frac{1}{n+1} - \frac{1}{n+2}$

(D) $\frac{1}{n+1} + \frac{1}{n+2}$

$$39. \qquad \lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots + n^4}{n^5} - \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots + n^3}{n^5} \ is$$

(B) zero

(C) $\frac{1}{4}$

(D) $\frac{1}{5}$

40. Let
$$\frac{d}{dx} F(x) = \left(\frac{e^{\sin x}}{x}\right)$$
, $x > 0$. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^3} dx = F(k) - F(1)$, then one of the possible values

- of k, is
- (A) 15

(B) 16

(C) 63

(D) 64

41. The area of the region bounded by the curves
$$y = |x - 1|$$
 and $y = 3 - |x|$ is

(A) 2 sq units

(B) 3 sq units

(C) 4 sq units

(D) 6 sq units

42. Let f (x) be a function satisfying f' (x) = f (x) with f (0) = 1 and g (x) be a function that satisfies
$$f(x) + g(x) = x^2$$
. Then the value of the integral $\int_{0}^{1} f(x) g(x) dx$, is

- The degree and order of the differential equation of the family of all parabolas whose axis is 43. x-axis, are respectively
 - (A) 2, 1

(B) 1, 2

(C) 3, 2

- (D) 2, 3
- The solution of the differential equation $(1 + y^2) + (x e^{\tan^{-1} y}) \frac{dy}{dx} = 0$, is 44.
 - (A) $(x-2) = k e^{-tan^{-1}y}$

(B) $2xe^{2\tan^{-1}y} + k$

(C) $x e^{tan^{-1}y} = tan^{-1} y + k$

- (D) $x e^{2 \tan^{-1} y} = e^{\tan^{-1} y} + k$
- If the equation of the locus of a point equidistant from the points (a_1, b_1) and (a_2, b_2) is $(a_1 -$ 45. a_2) x + $(b_1 - b_2)$ y + c = 0, then the value of 'c' is
 - (A) $\frac{1}{2}(a_2^2 + b_2^2 a_1^2 b_1^2)$

(B) $a_1^2 + a_2^2 + b_1^2 - b_2^2$

(C) $\frac{1}{2}(a_1^2 + a_2^2 - b_1^2 - b_2^2)$

- (D) $\sqrt{a_1^2 + b_1^2 a_2^2 b_2^2}$
- 46. Locus of centroid of the triangle whose vertices are (a cos t, a sin t), (b sin t, - b cos t) and (1, 0), where t is a parameter, is
 - (A) $(3x 1)^2 + (3y)^2 = a^2 b^2$ (C) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$
- (B) $(3x 1)^2 + (3y)^2 = a^2 + b^2$ (D) $(3x + 1)^2 + (3y)^2 = a^2 b^2$

- If the pair of straight lines $x^2 2pxy y^2 = 0$ and $x^2 2qxy y^2 = 0$ be such that each pair 47. bisects the angle between the other pair, then
 - (A) p = q

(B) p = -q

(C) pq = 1

- (D) pq = -1
- a square of side a lies above the x-axis and has one vertex at the origin. The side passing 48. through the origin makes an angle α (0 < α < $\frac{\pi}{4}$) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is
 - (A) y ($\cos \alpha \sin \alpha$) x ($\sin \alpha \cos \alpha$) = a
 - (B) y (cos α + sin α) + x (sin α cos α) = a
 - (C) y ($\cos \alpha + \sin \alpha$) + x ($\sin \alpha + \cos \alpha$) = a
 - (D) y (cos α + sin α) + x (cos α sin α) = a
- If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 8x + 2y + 8 = 0$ intersect in two distinct 49. points, then
 - (A) 2 < r < 8

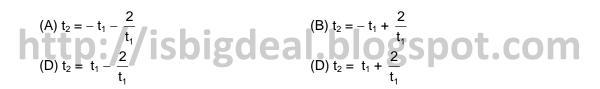
(B) r < 2

(C) r = 2

- 50. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq units. Then the equation of the circle is
 - (A) $x^2 + y^2 + 2x 2y = 62$ (C) $x^2 + y^2 2x + 2y = 47$

(B) $x^2 + y^2 + 2x - 2y = 47$ (D) $x^2 + y^2 - 2x + 2y = 62$

- The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 51. 2bt₂), then



The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the 52. value of b2 is

(A) 1

(B) 5

(C) 7

(D) 9

53. A tetrahedron has vertices at O (0, 0, 0), A (1, 2, 1), B (2, 1, 3) and C (-1, 1, 2). Then the angle between the faces OAB and ABC will be

(A) $\cos^{-1}\left(\frac{19}{35}\right)$

(B) $\cos^{-1}\left(\frac{17}{31}\right)$

 $(C) 30^{0}$

The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y - 4z - 19 = 0$ is cut by the 54. plane x + 2y + 2z + 7 = 0 is

(A) 1

(C)3

The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar if 55.

(A) k = 0 or -1

(C) k = 0 or -3

(D) k = 3 or -3

The two lines x = ay + b, z = cy + d and x = a'y + b', z = c'y + d' will be perpendicular, if and 56. only if

(A) aa' + bb' + cc' + 1 = 0

(B) aa' + bb' + cc' = 0

(C) (a + a') (b + b') + (c + c') = 0

(D) aa' + cc' + 1 = 0

The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y$ 57. -6z = 155 is

(A) 26

(B) $11\frac{4}{12}$

(C) 13

(D) 39

58. Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a', b', c' from the origin, then

(A) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$ (B) $\frac{1}{a^2} + \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} - \frac{1}{c'^2} = 0$

(C) $\frac{1}{a^2} - \frac{1}{b^2} - \frac{1}{c^2} + \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$ (D) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} - \frac{1}{a'^2} - \frac{1}{b'^2} - \frac{1}{c'^2} = 0$

 $\stackrel{\rho}{a}$, $\stackrel{\rho}{b}$, $\stackrel{\rho}{c}$ are 3 vectors, such that $\stackrel{\rho}{a} + \stackrel{\rho}{b} + \stackrel{\rho}{c} = \stackrel{\rho}{0}$, $|\stackrel{\rho}{a}| = 1$, $|\stackrel{\rho}{b}| = 2$, $|\stackrel{\rho}{c}| = 3$, then $\stackrel{\rho}{a} \cdot \stackrel{\rho}{b} + \stackrel{\rho}{b} \cdot \stackrel{\rho}{c} + \stackrel{\rho}{c} \cdot \stackrel{\rho}{a}$ is 59. equal to

(A) 0

(C)7

(D) 1

If u, v and w are three non-coplanar vectors, then $(u+v-w)\cdot(u-v)\times(v-w)$ equals 60.

(A) 0

(B) $\vec{u} \cdot \vec{v} \times \vec{w}$

61.	(C) $\vec{u} \cdot \vec{w} \times \vec{v}$ Consider points A, B, C and D with positi	(D) $3\vec{i}\cdot\vec{v}\times\vec{w}$ on vectors $7\hat{i}-4\hat{j}+7\hat{k}$, $\hat{i}-6\hat{j}+10\hat{k}$, $-\hat{i}-3\hat{j}+4\hat{k}$
	and $5\hat{i} - \hat{j} + 5\hat{k}$ respectively. Then ABCD is (A) square (C) rectangle	a (B) rhombus (D) parallelogram but not a rhombus
62.	The vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$, and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j}$ of the median through A is (A) $\sqrt{18}$ (C) $\sqrt{33}$	\hat{j} + 4 \hat{k} are the sides of a triangle ABC. The length (B) $\sqrt{72}$ (D) $\sqrt{288}$
63.	A particle acted on by constant forces $4\hat{i} + \hat{i} + 2\hat{j} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. The total (A) 20 units (C) 40 units	$-\hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point work done by the forces is (B) 30 units (D) 50 units
64.	Let $\overset{\rho}{u}=\hat{i}+\hat{j}, \overset{\rho}{v}=\hat{i}-\hat{j}$ and $\overset{\rho}{w}=\hat{i}+2\hat{j}+3\hat{k}$. If then $ \overset{\rho}{w}\cdot\hat{n} $ is equal to (A) 0 (C) 2	\hat{n} is unit vector such that $\overset{P}{u}\cdot\hat{n}=0$ and $\overset{P}{v}\cdot\hat{n}=0,$ (B) 1 (D) 3
65.	The median of a set of 9 distinct observation the set is increased by 2, then the median of (A) is increased by 2 (C) is two times the original median	ns is 20.5. If each of the largest 4 observations of if the new set (B) is decreased by 2 (D) remains the same as that of the original set
66.	In an experiment with 15 observations on x, $\sum x^2 = 2830$, $\sum x = 170$ One observation that was 20 was found to 30. Then the corrected variance is (A) 78.00 (C) 177.33	then following results were available: be wrong and was replaced by the correct value (B) 188.66 (D) 8.33
67.	Five horses are in a race. Mr. A selects two probability that Mr. A selected the winning has $(A) \frac{4}{5}$ $(C) \frac{1}{5}$	o of the horses at random and bets on them. The horse is $ \text{(B)} \ \frac{3}{5} $ $ \text{(D)} \ \frac{2}{5} $
68.	Events A, B, C are mutually exclusive events such that P (A) = $\frac{3x+1}{3}$, P (B) = $\frac{1-x}{4}$ and P (C) = $\frac{1-2x}{3}$. The set of possible values of x are in the interval	
	$(A) \left[\frac{1}{3}, \frac{1}{2} \right]$	(B) $\left[\frac{1}{3}, \frac{2}{3}\right]$
	(C) $\left\lfloor \frac{1}{3}, \frac{13}{3} \right\rfloor$	(D) [0, 1]

69.	respectively, then P (X = 1) is (A) $\frac{1}{32}$	able having a binomial distribution are 4 and 2 (B) $\frac{1}{16}$ $OSSPOT.COM$ (D) $\frac{1}{4}$
70.	The resultant of forces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q} is reversed, then \vec{R} is again doubled. The (A) $3:1:1$ (C) $1:2:3$	is doubled then $\overset{\text{P}}{R}$ is doubled. If the direction of then $P^2:Q^2:R^2$ is (B) $2:3:2$ (D) $2:3:1$
71.	Let R ₁ and R ₂ respectively be the maximum the maximum range on the horizontal plane (A) arithmetic–geometric progression (C) G.P.	ranges up and down an inclined plane and R be Then R ₁ , R, R ₂ are in (B) A.P. (D) H.P.
72.	right angle, the moment of the couple thus through an angle α , then the moment of cou	forming the couple is $\overset{\smile}{P}$. If $\overset{\smile}{P}$ is turned through a formed is $\overset{\smile}{H}$. If instead, the forces $\overset{\smile}{P}$ are turned uple becomes (B) $\overset{\smile}{H}$ cos α + $\overset{\smile}{G}$ sin α (D) $\overset{\smile}{H}$ sin α - $\overset{\smile}{G}$ cos α
73.	one with uniform velocity $\mbox{\ensuremath{\vec{u}}}$ and the other fr	e same point and move along two straight lines, from rest with uniform acceleration f . Let α be the The relative velocity of the second particle with $ (B) \ \frac{f\cos\alpha}{u} $ $ (D) \ \frac{u\cos\alpha}{f} $
74.		cliff h meters high, with the same speed u so as the stones is projected horizontally and the other hen $\tan\theta$ equals (B) $2g\sqrt{\frac{u}{h}}$ (D) $u\sqrt{\frac{2}{gh}}$
75.		t starts from rest and ends at rest. In the first part relevation f and in the second part with constant (B) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$ (D) $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$
		γ (1 1)

Solutions

- 1. Clearly both one one and onto
 - Because if n is odd, values are set of all non-negative integers and if n is an even, values are set of all negative integers.

Hence, (C) is the correct answer.

2.
$$z_1^2 + z_2^2 - z_1 z_2 = 0$$

 $(z_1 + z_2)^2 - 3z_1 z_2 = 0$
 $a^2 = 3b$.

Hence, (C) is the correct answer.

5.
$$\begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} + \begin{vmatrix} 1 & a & a^{2} \\ 1 & b & b^{2} \\ 1 & c & c^{2} \end{vmatrix} = 0$$

$$(1 + abc) \begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 abc = -1 .

Hence, (B) is the correct answer

4.
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$$
$$\left(\frac{1+i}{1-i}\right)^{x} = i^{x}$$

$$\Rightarrow$$
 x = 4n.

Hence, (A) is the correct answer.

6. Coefficient determinant =
$$\begin{vmatrix} 1 & 2a & a \\ 1 & 3b & b \\ 1 & 4c & c \end{vmatrix} = 0$$

$$\Rightarrow b = \frac{2ac}{a+c}.$$

Hence, (C) is the correct answer

8.
$$x^2 - 3 |x| + 2 = 0$$

 $(|x| - 1) (|x| - 2) = 0$
 $\Rightarrow x = \pm 1, \pm 2.$

Hence, (B) is the correct answer

7. Let
$$\alpha$$
, β be the roots

$$\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

$$\alpha + \beta = \frac{\alpha^2 + \beta^2 - 2\alpha\beta}{(\alpha + \beta)}$$

$$\left(-\frac{b}{a}\right) = \frac{b^2 - 2ac}{c^2}$$

$$\Rightarrow$$
 2a²c = b (a² + bc)

$\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$ are in H.P. Hence, (C) is the correct answer CEAL DIOSSOCT. COM

10.
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

$$= \begin{bmatrix} a^{2} + b^{2} & 2ab \\ 2ab & a^{2} + b^{2} \end{bmatrix}$$

$$\Rightarrow \alpha = a^{2} + b^{2}, \beta = 2ab.$$
Hence (P) is the correct angular

9.
$$\beta = 2\alpha$$

$$3\alpha = \frac{3a-1}{a^2-5a+3}$$

$$2\alpha^2 = \frac{2}{a^2-5a+6}$$

$$\frac{(3a-1)^2}{a(a^2-5a+3)^2} = \frac{1}{a^2+5a+6}$$

$$\Rightarrow a = \frac{2}{3}.$$

Hence, (A) is the correct answer

12. Clearly
$$5! \times 6!$$
 (A) is the correct answer

11. Number of choices =
$${}^5C_4 \times {}^8C_6 + {}^5C_5 \times {}^8C_5$$

= 140 + 56.
Hence, (B) is the correct answer

13.
$$\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$$

Since, $1 + \omega^n + \omega^{2n} = 0$, if n is not a multiple of 3 Therefore, the roots are identical. Hence, (A) is the correct answer

14.
$${}^{n}C_{r+1} + {}^{n}C_{r-1} + {}^{n}C_{r} + {}^{n}C_{r}$$

= ${}^{n+1}C_{r+1} + {}^{n+1}C_{r}$
= ${}^{n+2}C_{r+1}$.
Hence, (B) is the correct answer

17.
$$\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \dots$$
$$= 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - \dots$$

http://dsb.jgdeal.blogspot.com = $2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \right) - 1$ = $2 \log 2 - \log e$ = $\log \left(\frac{4}{e}\right)$.

Hence, (D) is the correct answer.

- 15. General term = 256 C_r ($\sqrt{3}$) $^{256-r}$ [(5) $^{1/8}$]^r From integral terms, or should be 8k \Rightarrow k = 0 to 32. Hence, (B) is the correct answer.
- 18. $f(x) = ax^2 + bx + c$ f(1) = a + b + c f(-1) = a - b + c $\Rightarrow a + b + c = a - b + c$ also 2b = a + c f'(x) = 2ax + b = 2ax $f'(a) = 2a^2$ f'(b) = 2ab f'(c) = 2ac $\Rightarrow AP$. Hence, (A) is the correct answer.
- 19. Result (A) is correct answer.
- 20. (B)

21.
$$a\left(\frac{1+\cos C}{2}\right) + c\left(\frac{1+\cos A}{2}\right) = \frac{3b}{2}$$

$$\Rightarrow a+c+b=3b$$

$$a+c=2b.$$
Hence, (A) is the correct answer

26.
$$f(1) = 7$$

$$f(1+1) = f(1) + f(1)$$

$$f(2) = 2 \times 7$$

$$only f(3) = 3 \times 7$$

$$\sum_{r=1}^{n} f(r) = 7 (1 + 2 + \dots + n)$$

$$= 7 \frac{n(n+1)}{2}.$$

25. (B)

23.
$$-\frac{\pi}{4} \le \frac{\sin^2 x}{2} \le \frac{\pi}{4}$$
$$-\frac{\pi}{4} \le \sin^{-1}(a) \le \frac{\pi}{4}$$

$\frac{1}{2} \le |a| \le \frac{1}{\sqrt{2}}.$ Hence, (D) is the correct answer Ceal blogspot.com

27. LHS =
$$1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots$$

= $1 - {^{n}C_{1}} + {^{n}C_{2}} - \dots$
= 0.

Hence, (C) is the correct answer

30.
$$\lim_{x\to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = \frac{2}{3}.$$

Hence, (C) is the correct answer.

28.
$$4 - x^{2} \neq 0$$

$$\Rightarrow x \neq \pm 2$$

$$x^{3} - x > 0$$

$$\Rightarrow x (x + 1) (x - 1) > 0.$$
Hence (D) is the correct answer.

29.
$$\lim_{x \to \pi/2} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)(1 - \sin x)}{4\left(\frac{\pi}{4} - \frac{x}{2}\right)(\pi - 2x)^{2}}$$
$$= \frac{1}{32}.$$

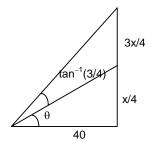
Hence, (C) is the correct answer.

32.
$$f(-x) = -f(x)$$

Hence, (B) is the correct answer.

1.
$$\sin (\theta + \alpha) = \frac{x}{40}$$

 $\sin a = \frac{x}{140}$
 $\Rightarrow x = 40$.
Hence, (B) is the correct answer



34.
$$f(x) = 0 \text{ at } x = p, q$$

$$6p^{2} + 18ap + 12a^{2} = 0$$

$$6q^{2} + 18aq + 12a^{2} = 0$$

$$f''(x) < 0 \text{ at } x = p$$
and
$$f''(x) > 0 \text{ at } x = q$$
.

30. Applying L. Hospital's Rule
$$\lim_{x\to 2a} \frac{f(a)g'(a) - g(a)f'(a)}{g'(a) - f'(a)} = 4$$

$h_{k=4}^{\frac{k(g'(a)-f'(a))}{(g'(a)-f'(a))}} = 4$ isbigdeal.blogspot.com

Hence, (A) is the correct answer.

36.
$$\int_{a}^{b} x f(x) dx$$
$$= \int_{a}^{b} (a+b-x) f(a+b-x) dx.$$

Hence, (B) is the correct answer.

33.
$$f'(0)$$

 $f'(0-h) = 1$
 $f'(0+h) = 0$
LHD \neq RHD.
Hence, (B) is the correct answer.

37.
$$\lim_{x \to 0} \frac{\tan(x^2)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\tan(x^2)}{x^2 \left(\frac{\sin x}{x}\right)}$$

Hence (C) is the correct answer.

38.
$$\int_{0}^{1} x (1-x)^{n} dx = \int_{0}^{1} x^{n} (1-x)$$
$$= \int_{0}^{1} (x^{n} - x^{n+1}) = \frac{1}{n+1} - \frac{1}{n+2}.$$

Hence, (C) is the correct answer.

35.
$$F(t) = \int_{0}^{t} f(t - y) f(y) dy$$
$$= \int_{0}^{t} f(y) f(t - y) dy$$
$$= \int_{0}^{t} e^{y} (t - y) dy$$
$$= x^{t} - (1 + t).$$
Hence (P) is the correct

Hence, (B) is the correct answer.

34. Clearly f" (x) > 0 for
$$x = 2a \Rightarrow q = 2a < 0$$
 for $x = a \Rightarrow p = a$ or $p^2 = q \Rightarrow a = 2$.
Hence, (C) is the correct answer.

40.
$$F'(x) = \frac{e^{\sin x}}{3^x}$$

$$h = \int_{-\infty}^{\infty} \frac{1}{x} e^{\sin x} dx = F(k) - F(1)$$

$$= \int_{-\infty}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$$

$$= \int_{-\infty}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$$

$$= \int_{1}^{64} F'(x) dx = F(k) - F(1)$$

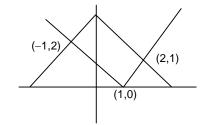
$$F (64) - F (1) = F (k) - F (1)$$

 $\Rightarrow k = 64.$

Hence, (D) is the correct answer.

41. Clearly area =
$$2\sqrt{2} \times \sqrt{2}$$

= sq units



45. Let p (x, y)

$$(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$$

$$(a_1 - a_2) x + (b_1 - b_2) y + \frac{1}{2} (b_2^2 - b_1^2 + a_2^2 - a_1^2) = 0.$$

Hence, (A) is the correct answer.

46.
$$x = \frac{a\cos t + b\sin t + 1}{3}, y = \frac{a\sin t - b\cos t + 1}{3}$$

$$\left(x - \frac{1}{3}\right)^2 + y^2 = \frac{a^2 + b^2}{9}.$$

Hence, (B) is the correct answer.

43. Equation
$$y^2 = 4a \ 9x - h$$
)
$$2yy_1 = 4a \Rightarrow yy_1 = 2a$$

$$yy_2 = y_1^2 = 0.$$
Hence (B) is the correct answer.

42.
$$\int_{0}^{1} f(x) [x^{2} - f(x)] dx$$
solving this by putting $f'(x) = f(x)$.
Hence, (B) is the correct answer.

50. Intersection of diameter is the point
$$(1, -1)$$

 $\pi s^2 = 154$
 $\Rightarrow s^2 = 49$
 $(x-1)^2 + (y+1)^2 = 49$
Hence, (C) is the correct answer.

49.
$$\frac{dx}{dy} (1 + y^2) = (e^{\sin^{-1} y} - x)$$

$$h^{\frac{dx}{dy}} + \frac{x}{1+y^{\alpha}} = \frac{e^{sub^{-1}-y}}{1+y^2}$$
 bigdeal.blogspot.com

52.
$$\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$$

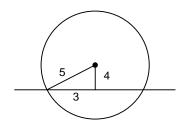
$$\Rightarrow e_1 = \frac{5}{4}$$

$$ae_2 = \sqrt{1 - \frac{b^2}{16}} \times 4 = 3$$

$$\Rightarrow b^2 = 7.$$
Hence (C) is the correct

Hence, (C) is the correct answer.

54. (C)



Hence, (A) is the correct answer.

49.
$$(x-1)^2 + (y-3)^2 = r^2$$

$$(x-4)^2 + (y+2)^2 - 16 - 4 + 8 = 0$$

$$(x-4)^2 + (y+2)^2 = 12.$$

67. Select 2 out of 5
$$= \frac{2}{5}.$$
Hence, (D) is the correct answer.

65.
$$0 \le \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \le 1$$

$$12x+4+3-3x+6-12x \le 1$$

$$0 \le 13-3x \le 12$$

$$3x \le 13$$

$$\Rightarrow x \ge \frac{1}{3}$$

$$x \le \frac{13}{3}.$$

Hence, (C) is the correct answer.

3. $hArg\left(\frac{z}{\omega}\right) = \frac{\pi}{2} / isbigdeal.blogspot.com$ $|z\omega| = 1$ $\overline{z}\omega = -i \text{ or } +i$.