1. Let x, y, z be non-zero real numbers. Suppose α, β, γ are complex numbers such that $|\alpha|=|\beta|=|\gamma|=1$. If $x+y+z=0=\alpha x+\beta y+\gamma z$, then prove that $\alpha=\beta=\gamma$.
2. Let c be a fixed real number. Show that a root of the equation

$$
x(x+1)(x+2) \cdots(x+2009)=c
$$

can have multiplicity at most 2. Determine the number of values of c for which the equation has a root of multiplicity 2 .
3. Let $1,2,3,4,5,6,7,8,9,11,12, \cdots$ be the sequence of all the positive integers which do not contain the digit zero. Write $\left\{a_{n}\right\}$ for this sequence. By comparing with a geometric series, show that $\sum_{n} \frac{1}{a_{n}}<90$.
4. Find the values of x, y for which $x^{2}+y^{2}$ takes the minimum value where $(x+5)^{2}+(y-12)^{2}=14^{2}$.

5 . Let p be a prime number bigger than 5 . Suppose, the decimal expansion of $1 / p$ looks like $0 . \overline{a_{1} a_{2} \cdots a_{r}}$ where the line denotes a recurring decimal. Prove that 10^{r} leaves a remainder of 1 on dividing by p.
6. Let a, b, c, d be integers such that $a d-b c$ is non-zero. Suppose b_{1}, b_{2} are integers both of which are multiples of $a d-b c$. Prove that there exist integers simultaneously satisfying both the equalities $a x+b y=$ $b_{1}, c x+d y=b_{2}$.
7. Compute the maximum area of a rectangle which can be inscribed in a triangle of area M.
8. Suppose you are given six colours and, are asked to colour each face of a cube by a different colour. Determine the different number of colourings possible.
9. Let $f(x)=a x^{2}+b x+c$ where a, b, c are real numbers. Suppose $f(-1), f(0), f(1) \in[-1,1]$. Prove that $|f(x)| \leq 3 / 2$ for all $x \in[-1,1]$.
10. Given odd integers a, b, c, prove that the equation $a x^{2}+b x+c=0$ cannot have a solution x which is a rational number.

