Roll No.....

Total No. of Questions: 09]

[Total No. of Pages: 02

Paper ID [A0414]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - 5th)

ELECTROMAGNETIC FIELD THEORY (EE - 303)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) What is the physical significance of Divergence of a vector field A.
- b) Show that

$$\vec{i} \times (\vec{r} \times \vec{i}) + \vec{j} \times (\vec{r} \times \vec{j}) + \vec{k} \times (\vec{r} \times \vec{k}) = 2\vec{r}$$

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

- What is equipotential surface. Draw equipotential surface for two closely placed positive point charges.
- d) Calculate capacitance of a coaxial transmission line per unit length having inner and outer radii 1 mm and 5 mm respectively and dielectric constant of intervening medium 3.
- e) Define Ampere in terms of magnetic force.
- f) What is analogy between electric field and magnetic field.
- g) What is displacement current.
- h) What do you mean by polarized and unpolarised electromagnetic waves.
- i) What is dissipation factor of dielectric.
- j) Find the velocity of plane wave in a lossless medium having dielectric constant 5 relative permeability unity.

Section - B

$$(4 \times 5 = 20)$$

- Q2) State and prove Gauss Divergence Theorem and explain its physical significance.
- Q3) (a) Prove that the electric field intensity is equal to the negative gradient of the potential.
 - (b) Derive the expression for the capacitance of an infinite single wire runs parallel to ground.
- Q4) Explain in detail the inconsistency of Ampere's law and make necessary Maxwell's modification.
- Q5) (a) State and explain Poynting Theorem.
 - (b) At what distance in wavelength, is the radiation component of magnetic field twice the induction component.
- Q6) (a) Explain that electromagnetic wave is transverse in nature.
 - (b) Calculate propagation constant γ for a material with $\mu_r = 1$, $\varepsilon_r = 8$ and $\sigma = 0.25$ pS/m, if wave frequency is 1.6 MHz.

Section - C

$$(2 \times 10 = 20)$$

- Q7) (a) Derive Laplace's equation for electrostatic field. Write down this equation in spherical co-ordinate and obtain a general solution for the same.
 - (b) Find the volume charge density inside a sphere of radius a. Given electric field intensity $E_r = A r^4$ r < a $E_r = A r^{-2}$ r > a
- **Q8)** (a) Using vector potential concept, find the magnetic intensity about a long straight wire carrying current I.
 - (b) A plane electromagnetic wave having a frequency of 10 MHz has an average pointing vector of 1 W/m². If the medium is lossless with relative permeability 2 and relative permittivity 3. Find (i) velocity of propagation (ii) the wavelength (iii) impedance of the medium (iv) r.m.s. electric field.
- Q9) (a) Discuss reflection of electromagnetic wave from a perfect insulator incident Obliquely.
 - (b) Calculate skin depth, propagation constant, wave velocity at a frequency of 1.6 MHz in aluminium where $\sigma = 38.2$ MS/m and $\mu_r = 1$.