CE8-R3: LOGIC AND FUNCTIONAL PROGRAMMING

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours
Total Marks: 100
1.
a) Prove a theorem "from $\{\sim P \vee Q, P\}$ infer Q " using Natural Deduction System.
b) Show that a set containing propositional formulae $\{P, Q, P \rightarrow R, R \rightarrow Q\}$ is inconsistent using truth table.
c) Convert the following FOL formula into its equivalent Prenex form.

$$
(\forall y)[R(y, b) \vee(\forall x)\{Q(x) \rightarrow R(x, y)\}] \Lambda(\forall x)(\sim P(x) \rightarrow Q(a))
$$

d) State the control strategies of PROLOG.
e) Differentiate between lazy and eager evaluation strategies.
f) Give recursive data type definition of a binary tree in SML.
g) In SML, fn $x=>E 1 \mid y=>E 2$ is a definition of unnamed function of type 'a --> 'b, where x \& y are of type 'a and E1 \& E2 are expressions of type 'b. This is similar to lambda functions. Define a construct "if E then E1 else E2" using this notation.
2.
a) Consider $\sum=\{P \vee Q \rightarrow R \wedge Q, P \vee Q\}$ a set of propositional expressions. Show that $R \Lambda Q$ is logical consequence of \sum using semantic tableaux method.
b) Show that joint denial (neither α nor β) represented $\alpha \downarrow \beta$ is adequate.
c) Prove that, if $\quad \sum$ is a set of hypotheses and $\alpha \& \beta$ are well formed formulae, then prove that $\{\Sigma \cup \alpha\} \mid-\beta$ implies $\sum \mid-(\alpha \rightarrow \beta)$.
(6+6+6)
3.
a) Show that "John has got money" can be concluded from the text given below using resolution refutation method,
"Everyone who sees a movie in a theatre has to buy a ticket. Person who does not have money can not buy a ticket. John sees a movie."
b) Consider the following set of formulae in FOPL:

$$
\begin{array}{lll}
\alpha & : & (\forall x)(P(x) \rightarrow(Q(x) \wedge R(x))) \\
\beta & : & (\exists x)(P(x) \wedge L(x))
\end{array}
$$

Show that $G=(\exists x)(L(x) \Lambda R(x))$ is a logical consequence of α and β.
c) Prove that sf S is a set of clauses and then C is a logical consequence of S iff the set $S \cup\{\sim C\}$ is unsatisfiable.
4.
a) Code the following facts and rules in prolog and generate search tree for the query 'which courses does Mary take?'. Facts are given as follows:
i) Database is an easy course and AI \& Hardware course are not easy.
ii) Books for Hardware and Database courses are available.
iii) Al has 8 credits with no lab component.

Rule 1: X takes Y , if Y is easy course and books for Y are available.

Rule 2: X takes Y, if Y has 8 credits and Y has lab component.
b) Write Prolog program to generate integer number between two bounds (inclusive) say L and U.
(10+8)
5.
a) What will be the values of x and y if the following SML statements are executed?

```
val pi = 3.1414;
fun circum (r)=2.0 * pi * r;
val x = circum (3.0);
val pi = 1.0;
val y = circum (3.0);
```

b) What are the significances of the following two definitions of averaging two numbers? State at least three differences.
fun av $(x, y)=(x+y) / 2.0$;
fun av1 $x y=(x+y) / 2.0$;
c) Convert the following if-then-else expression into case expression in SML if $x=0$ then "zero" else if $x=1$ then "one" else if $x=2$ then "two" else "none".
d) Define Boolean implication function denoted by symbol \rightarrow as an infix operator.
$(4+4+5+5)$
6.
a) Define a data type SHAPE of geometrical figures square, rectangle and circle. Write a polymorphic function in SML to calculate area of an object of type SHAPE.
b) Write a SML function to merge two integer lists in increasing order assuming original lists are also in increasing order.
c) Write a function in SML to generate a list of 10 numbers of a sequence in increasing order using the following formula:

Number $\quad=\quad 2^{n} * 3^{m}, \quad \forall \mathrm{n}, \mathrm{m} \geq 0$
The list of numbers can be defined informally as:

- 1 is valid number,
- if x is a valid number, then $2 x$ and $3 x$ are also valid numbers.
(6+6+6)

7.

a) Find normal form of the following λ-expressions and show the evaluation steps.
i) $(\lambda x \cdot(\lambda y \cdot x * y)) 10$
ii) $(\lambda x . x 9)(\lambda y . y+4)$
iii) $(\lambda x y . x y)\left(\lambda z . z^{*} 4\right) 5$
iv) $\left(\lambda x y . x^{*} y\right) 2$
b) Define normal form of λ-expressions? Do all λ-expressions have the normal forms? Give arguments to support your answer.
c) Write a λ-function named 'intersection' to generate a list common element of two lists. Use functions such as null, head, tail, cons (constructor) etc. with the obvious meanings for manipulating lists.
(6+6+6)

