
CE8-R3: LOGIC AND FUNCTIONAL PROGRAMMING 

NOTE:

Time: 3 Hours               Total Marks: 100

1.
a) Convert ( ∀ x) ( ∀ y) (( ∀ z) (a(x,y,z) v B (y))) → ( ∀ x) C (x,z)  prenex normal form.
b) Write a SML program for computation GCD.
c) Who exceptions are intercepted and handled in SML?
d) What is the following program doing? Is this program recursive and iterative? Justify.

ABC (N,F) ← ABC (0,N,1,F).
ABC (I,N,T,F) ← I<N,  I1 is I + 1, T1 is T*T1,  ABC(I1,N,T1,F).
ABC (N,N,F,F)

e) Discuss Cut in Prolog.
f) Define satisfiability, Validity and consistency in prepositional logic.
g) Define signature and functions in Functional programming, in brief.

(7x4)

2.
a) Define tree data type for a binary tree.  Write a SML code to get depth of a binary tree.
b) Show that ((P ∧ θ) → R) ∨ (∼θ → ∼R) is valid using semantic tableux method.
c) Write iterative program in Prolog to add the elements (integers) of a given list.

(6+6+6)

3.
a) Write a Prolog code for Quick sort.
b) Prove {(pi → pj), (¬(pj → pk) → ¬pi)} ├ (pi → pk).
c) What is Resolution fefutation? Display a Resolution Refutation of

{{¬ pi,pj},{¬pj,pk ¬pi},{pi}{¬pk}}
(6+4+4+4)

4. Let ∑ = {zero, succ, pred, plus} be a signature.  Let I be the interpretation in Z, the set 
of  integers such that  I(zero)=0,  I(succ)=λx[x+1],  I(pred)=λx[x-1] and  I(plus)=λ(x,  y)  [x
+y]?

a) Define the set of normal forms (subset of T∑ ).
b) Define rewrite rules to compute the normal form of each term.
c) Define the Unique ∑ -homomorophism  hz : T∑ → Z.
d) Let I` be another interpretation in E, the set of all even inters with I` (zero) = 0

I` (succ) =  λx[x+2],  I` (pred) =  λx[x-2] and  I (plus) =  λ(x,y )[x+y].  Show that the two 
interpretations are isomorphic.

(4+4+4+6)
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1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same 

sequence.



5.
a) Let b denotes any base type and let the following grammer define the language of simple 

types for the simply-typed Lambda Calculus.
)(|t|b:: τττ →

Let Γ be a set of type assignments for variables.  Then prove that substitution preserves 
types in the simply typed lambda calculus, i.e. x:α, M:α, and L:β then L{M/x}:β.

b) Find  most  general  type  assignments  for  the  combinatory  S ∆
=  λxyz[((xz)(yz))]  in  the 

second order language of types defined by
)(|t|b:: τττ →

][t|:: πττ ∀
where b denotes any base type and t denotes a type variable.

c) How control in Prolog is characterized with the help of an example.  Show how response 
to a query is affected?

(6+6+6)
6.
a) Let derivatives (Y,X,Z) denote that the derivative of Y with respect to X is Z.  Given the 

following facts:
derivative(N,X,0).
derivative(X,X,1).
derivative(sin(X),X,cos(X)).
derivative(cos(X),X,-sin(X)).
derivative(exp(X),X,exp(X)).
derivative(log(X),X,1/X).
write logic programming rules to compute derivatives of
i) Sum of two expressions.
ii) Difference of two expressions.
iii) Product of two expressions.
iv) Quotient of two expressions.
In particular make sure your definitions can calculate the derivatives of expressions such 
as 3*exp(5*X)*sin(2*X)+cos(X)/log(X).

b) Translate the following argument into first order logic and prove it using resolution.
Whoever visited the building was observed.  Anyone who had observed Ajay,  would 
have remembered him.  Nobody remembered Ajay.   Therefore Ajay did not  visit  the 
building.

(9+9)
7.

a) Let S ∆
=  λxλyλz[((x z)(y z))] and K ∆

=  λxλy[x].  Prove that application is not associative by 

showing that:
((S K) K) ≠ β(S (K K))

b) In all of mathematics, function composition denoted by the infix operator o is associative. 
That  is,  if  f :  A  → B,  g:  B  → C  and  h:  C  → D  are  any  three  functions,  then  the 
composition f o g : A → C is defined as the function (f o g)(a) = g( f (a)).  It is then easy 
to see that o is associative, i.e.

(f o g) o h = f o (g o h)
Defined a lambda-expression called compose and prove that it is associative.
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(9+9)
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