
CE8-R3: LOGIC AND FUNCTIONAL PROGRAMMING

NOTE:

Time: 3 Hours Total Marks: 100

1.
a) Convert (∀ x) (∀ y) ((∀ z) (a(x,y,z) v B (y))) → (∀ x) C (x,z) prenex normal form.
b) Write a SML program for computation GCD.
c) Who exceptions are intercepted and handled in SML?
d) What is the following program doing? Is this program recursive and iterative? Justify.

ABC (N,F) ← ABC (0,N,1,F).
ABC (I,N,T,F) ← I<N, I1 is I + 1, T1 is T*T1, ABC(I1,N,T1,F).
ABC (N,N,F,F)

e) Discuss Cut in Prolog.
f) Define satisfiability, Validity and consistency in prepositional logic.
g) Define signature and functions in Functional programming, in brief.

(7x4)

2.
a) Define tree data type for a binary tree. Write a SML code to get depth of a binary tree.
b) Show that ((P ∧ θ) → R) ∨ (∼θ → ∼R) is valid using semantic tableux method.
c) Write iterative program in Prolog to add the elements (integers) of a given list.

(6+6+6)

3.
a) Write a Prolog code for Quick sort.
b) Prove {(pi → pj), (¬(pj → pk) → ¬pi)} ├ (pi → pk).
c) What is Resolution fefutation? Display a Resolution Refutation of

{{¬ pi,pj},{¬pj,pk ¬pi},{pi}{¬pk}}
(6+4+4+4)

4. Let ∑ = {zero, succ, pred, plus} be a signature. Let I be the interpretation in Z, the set
of integers such that I(zero)=0, I(succ)=λx[x+1], I(pred)=λx[x-1] and I(plus)=λ(x, y) [x
+y]?

a) Define the set of normal forms (subset of T∑).
b) Define rewrite rules to compute the normal form of each term.
c) Define the Unique ∑ -homomorophism hz : T∑ → Z.
d) Let I` be another interpretation in E, the set of all even inters with I` (zero) = 0

I` (succ) = λx[x+2], I` (pred) = λx[x-2] and I (plus) = λ(x,y)[x+y]. Show that the two
interpretations are isomorphic.

(4+4+4+6)

CE8-R3 Page 1 of 2 July, 2006

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same

sequence.

5.
a) Let b denotes any base type and let the following grammer define the language of simple

types for the simply-typed Lambda Calculus.
)(|t|b:: τττ →

Let Γ be a set of type assignments for variables. Then prove that substitution preserves
types in the simply typed lambda calculus, i.e. x:α, M:α, and L:β then L{M/x}:β.

b) Find most general type assignments for the combinatory S ∆
= λxyz[((xz)(yz))] in the

second order language of types defined by
)(|t|b:: τττ →

][t|:: πττ ∀
where b denotes any base type and t denotes a type variable.

c) How control in Prolog is characterized with the help of an example. Show how response
to a query is affected?

(6+6+6)
6.
a) Let derivatives (Y,X,Z) denote that the derivative of Y with respect to X is Z. Given the

following facts:
derivative(N,X,0).
derivative(X,X,1).
derivative(sin(X),X,cos(X)).
derivative(cos(X),X,-sin(X)).
derivative(exp(X),X,exp(X)).
derivative(log(X),X,1/X).
write logic programming rules to compute derivatives of
i) Sum of two expressions.
ii) Difference of two expressions.
iii) Product of two expressions.
iv) Quotient of two expressions.
In particular make sure your definitions can calculate the derivatives of expressions such
as 3*exp(5*X)*sin(2*X)+cos(X)/log(X).

b) Translate the following argument into first order logic and prove it using resolution.
Whoever visited the building was observed. Anyone who had observed Ajay, would
have remembered him. Nobody remembered Ajay. Therefore Ajay did not visit the
building.

(9+9)
7.

a) Let S ∆
= λxλyλz[((x z)(y z))] and K ∆

= λxλy[x]. Prove that application is not associative by

showing that:
((S K) K) ≠ β(S (K K))

b) In all of mathematics, function composition denoted by the infix operator o is associative.
That is, if f : A → B, g: B → C and h: C → D are any three functions, then the
composition f o g : A → C is defined as the function (f o g)(a) = g(f (a)). It is then easy
to see that o is associative, i.e.

(f o g) o h = f o (g o h)
Defined a lambda-expression called compose and prove that it is associative.

CE8-R3 Page 2 of 2 July, 2006

(9+9)

CE8-R3 Page 3 of 2 July, 2006

	Time: 3 Hours							 	 Total Marks: 100

