AIEEE 2003

PHYSICS & CHEMISTRY

1.	-	U	ge Q moving with velocity \vec{v}	1	
	completes one fu		magnetic field of induction B.	The work done by the h	leid when the particle
	$(a)\left(\frac{Mv^2}{R}\right)2\pi R$	(b) Zero	(c) BQ2 π R	(d) BQ $v2\pi R$	

- 2. A particle of charge -16×10^{-18} coulomb moving with velocity 10ms^{-1} along the x-axis enters a region where a magnetic field of induction B is along the y-axis, and an electric field of magnitude 10^4V/m is along the negative z-axis. If the charged particle continues moving along the x-axis, the magnitude of B is
 - (a) 10^3Wb/m^2 (b) 10^5Wb/m^2 (c) 10^{16}Wb/m^2 (d) 10^{-3}Wb/m^2
- 3. A thin rectangular magnet suspended freely has a period of oscillation equal to T. Now it is broken into two equal halves (each having half of the original length) and one piece is made to oscillate freely in the same field. If its period of oscillation is T', the ratio T' is
 - (a) $\frac{1}{2\sqrt{2}}$ (b) $\frac{1}{2}$ (c) 2
- 4. A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through 60°. The torque needed to maintain the needle in this position will be
 - (a) $\sqrt{3}W$ (b) W (c) $\frac{\sqrt{3}}{2}W$ (d) 2W
- 5. The magnetic lines of force inside a bar magnet
 - (a) are from north-pole to south-pole of the magnet
 - (b) do not exist
 - (c) depend upon the area of cross-section of the bar magnet
 - (d) are from south-pole to north-pole of the magnet
- 6. Curie temperature is the temperature above which
 - (a) a ferromagnetic material becomes paramagnetic (b) a paramagnetic material becomes diamagnetic
- (c) a ferromagnetic material becomes diamagnetic
 (d) a paramagnetic material becomes ferromagnetic
 A spring balance is attached to the ceiling of a lift. A man hangs his bag on the spring and the spring reads 49 N, when the lift is stationary. If the lift moves downward with an acceleration of 5m/s², the reading of the
- spring balance will be
 (a) 24 N (b) 74 N (c) 15 N (d) 49 N
- 8. The length of a wire of a potentiometer is 100 cm, and the e.m.f. of its standard cell is E volt. It is employed to measure the e.m.f of a battery whose internal resistance is $0.5\,\Omega$. If the balance point is obtained at l=30 cm from the positive end, the e.m.f. of the battery is
 - (a) $\frac{30\,\mathrm{E}}{100.5}$ (b) $\frac{30\,\mathrm{E}}{(100-0.5)}$ (c) $\frac{30(\mathrm{E}-0.5\mathrm{i})}{100}$, where i is the current in the potentiometer wire (d) $\frac{30\,\mathrm{E}}{100}$
- 9. A strip of copper and another of germanium are cooled from room temperature to 80 K. The resistance of
 - (a) each of these decreases (b) copper strip increases and that of germanium decreases
 - (c) copper strip decreases and that of germanium increases (d) each of these increases

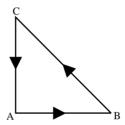
11.	The thermo e.m.f. of a thermo-couple is $25 \muV/^{0}C$ at room temperature. A galvanometer of 40 ohm resistance, capable of detecting current as low as 10^{-5} A, is connected with the thermo couple. The smallest			
	-		tected by this sytem is	
	(a) 16° C	(b) 12° C		(d) 20° C
12.	0.13 g in 30 mir	-	hemical equivalent of Z	urrent through a circuit, decreases in mass by 2n and Cu are 32.5 and 31.5 respectively, the
	(a) 0.180 g	(b) 0.141 g	(c) 0.126 g	(d) 0.242 g
13.	Dimension of $\frac{1}{\mu}$	$\frac{1}{\epsilon_0 \epsilon_0}$, where symbols	have their usual meaning	ng, are
	(a) $[L^{-1}T]$	(b) $[L^{-2}T^2]$	(c) $[L^2 T^{-2}]$	(d) [LT ⁻¹]
14.	A circular disc X	K of radius R is made	e from an iron plate of the	hickness t, and another disc Y of radius 4R is
	made from an iro	on plate of thickness	$\frac{t}{4}$. Then the relation be	tween the moment of inertia I_x and I_y is
	(a) $I_{Y} = 32 I_{X}$	(b) $I_{Y} = 16 I_{X}$	$(c) I_{Y} = I_{X}$	$(d) I_{Y} = 64 I_{X}$
15.	1		th is 5 hours. If the sepue, the new time period v	varation between the earth and the satellite is will become
	(a) 10 hours	(b) 80 hours	(c) 40 hours	(d) 20 hours
16.		ming uniform circula gular momentum is	r motion has angular fre	quency is doubled & its kinetic energy halved,
	(a) $\frac{L}{4}$	(b) 2L	(c) 4 L	(d) $\frac{L}{2}$
17.	Which of the foll	lowing radiations has	s the least wavelength?	
	(a) γ-rays	(b) β -rays	(c) α-rays	(d) X-rays
18.	When a U ²³⁸ nuc speed of the resid		st, decays by emitting a	n alpha particle having a speed 'u', the recoil
	(a) $\frac{4u}{238}$	(b) $-\frac{4u}{234}$	(c) $\frac{4u}{234}$	(d) $-\frac{4u}{238}$
19.	separation betwe	een their centres equa ered by the smaller be	1	pectively are released in free space with initial each other due to gravitational force only, then is
	(a) 2.5 R	(b) 4.5 R	(c) 7.5 R	(d) 1.5 R
20.	tially due to the o	lifference in the	-	e in a metal and a semiconductor arises essen-
	(a) crystal structu			e number of charge carriers with temperature
21.	(c) type of bondi	· ·		attering mechanism with temperature kes after at least 6 m. If the same car is moving
<i>-</i> 1.	_	•	n, can be stopped by bra n stopping distance is	ares arter at least 6 m. If the same car is moving
	(a) 12 m	(b) 18 m	(c) 24 m	(D) 6 m
				2

10. Consider telecommunication through optical fibres. Which of the following statements is **not** true?

(b) Optical fibres are subjective to electromagnetic interference from outside

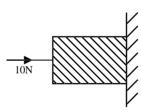
(d) Optical fibres may have homogeneous core with a suitable cladding.

(a) Optical fibres can be of graded refractive index


(c) Optical fibres have extremely low transmission loss

A boy playing on the roof of a 10 m high building throws a ball with a speed of 10m/s at an angle of 30° with the horizontal. How far from the throwing point will the ball be at the height of 10 m from the ground?

[g = 10m/s², sin30⁰ =
$$\frac{1}{2}$$
, cos30⁰ = $\frac{\sqrt{3}}{2}$]


- (a) 5.20m
- (b) 4.33m
- (c) 2.60m
- (d) 8.66m
- An ammeter reads up to 1 ampere. Its internal resistance is 0.81 ohm. To increase the range to 10 A the value 23. of the required shunt is
 - (a) 0.03Ω
- (b) 0.3Ω
- (c) 0.9Ω
- (d) 0.09Ω
- The physical quantities not having same dimensions are
 - (a) torque and work

- (b) momentum and Planck's constant
- (c) stress and Young's modulus
- (d) speed and $(\mu_n \epsilon_n)^{-1/2}$
- Three forces start acting simultaneously on a particle moving with velocity, \vec{v} . These forces are represented in magnitude and direction by the three sides of a triangle ABC. The particle will now move with velocity

- (a) less than \vec{v} (b) greater than \vec{v} (c) $|\vec{v}|$ in the direction of the largest force BC (d) \vec{v} , remaining unchanged
- If the electric flux entering and leaving an enclosed surface respectively is ϕ_1 and ϕ_2 , the electric charge inside the surface will be

 - (a) $(\phi_2 \phi_1)\epsilon_0$ (b) $(\phi_1 + \phi_2)/\epsilon_0$
- (c) $(\phi_2 \phi_1)/\epsilon_0$ (d) $(\phi_1 + \phi_2)\epsilon_0$
- A horizontal force of 10 N is necessary to just hold a block stationary against a wall. The co-efficient of friction between the block and the wall is 0.2. The weight of the block is

- (a) 20 N
- (b) 50 N
- (c) 100 N
- (d) 2 N
- 28. A marble block of mass 2 kg lying on ice when given a velocity of 6 m/s is stopped by friction in 10 s. Then the coefficient of friction is
 - (a) 0.02
- (b) 0.03
- (c) 0.04
- (d) 0.01

- 29. Consider the following two statements:
 - (A) Linear momentum of a system of particles is zero
 - (B) Kinetic energy of a system of particles is zero
 - Then (a) A does not imply B and B does not imply A
 - (b) A implies B but B does not imply A
 - (c) A does not imply B but B implies A
- (d) A implies B and B implies A

	(d) the currents in the two coils				
31.	A block of mass M is pulled along a horizontal frictionless surface by a rope of mass m. If a force P is applied at the free end of the rope, the force exerted by the rope on the block is				is applied
	$(a)\frac{Pm}{M+m}$	(b) $\frac{Pm}{M-m}$	(c) P	(d) $\frac{PM}{M+m}$	
32.		lance hangs from the hone. Then the true stat	_	ht spring balance and a block of mass Male reading is	kg hangs
	(a) Both the scale	es read M kg each	(b) The scale of the	lower one reads M kg and of the upper	one zero
	(c) The reading of	of the two scales can b	e anything but the	sum of the reading will be M kg	
	(d) Both the scale	es read M/2 kg each			
33.	-	▼		ed by attaching a weight of 200 N to the lenergy stored in the wire is	ower end.
	(a) $0.2 J$	(b) 10 J	(c) 20 J	(d) 0.1 J	
34.	_	ity for a body projecte angle of 45° with the		ls from the surface of earth is 11 km/s. It evelocity will be	f the body
	(a) $11\sqrt{2} \text{ km/s}$	(b) 22 km/s	(c) 11 km/s	(d) $\frac{11}{\sqrt{2}}$ km/s	
35.	A mass M is susp	ended from a spring of	f negligible mass. T	he spring is pulled a little and then releas	ed so that
	the mass execute	s SHM of time period	T. If the mass is inc	creased by m, the time period becomes	$\frac{5T}{3}$. Then
	the ratio of $\frac{m}{M}$ is				
	$(3) \frac{3}{2}$	(b) $\frac{25}{9}$	$(c) \frac{16}{}$	$\frac{5}{2}$	
	(a) 5	9	9	(u) 3	
36.	"Heat cannot by i	_	at lower temperatu	are to a body at higher temperature" is a	statement
	(a) second law of	thermodynamics	(b) conservation	n of momentum	
	(c) conservation		` '	thermodynamics	
37.				two massless springs of spring constant n, are equal, the ratio of amplitude of A a	
	$\sqrt{k_1}$	\mathbf{k}_{2}	k_2	\mathbf{k}_1	
	(a) $\sqrt{\frac{\mathbf{k}_1}{\mathbf{k}_2}}$	(b) $\overline{k_1}$	(c) $\sqrt{\frac{k_2}{k_1}}$	(d) $\frac{\mathbf{k}_1}{\mathbf{k}_2}$	
38.	•	imple pendulum exec ne period of the pendu		onic motion is increased by 21%. The pength is	ercentage
	(a) 11%	(b) 21%	(c) 42%	(d) 10%	
39.	The displacemen	nt y of a wave travellin	ng in the x-direction	n is given by $y = 10^{-4} \sin \left(600t - 2x + \frac{\pi}{3} \right)$	metres
				d of the wave-motion, in ms ⁻¹ , is	•
	(a) 300	(b) 600	(c) 1200	(d) 200	
					4

30. Two coils are placed close to each other. The mutual inductance of the pair of coils depends upon

(c) the materials of the wires of the coils.

(a) the rates at which currents are changing in the two coils

(b) relative position and orientation of the two coils

	origin. Then			
	(a) $\vec{r} \cdot \vec{T} = 0$ and \vec{F}	$\vec{r} \cdot \vec{T} \neq 0$	(b) $\vec{r}.\vec{T} \neq 0$ and $\vec{F}.\vec{T} =$	0
	(c) $\vec{r} \cdot \vec{T} \neq 0$ and \vec{F}	$\vec{F} \cdot \vec{T} \neq 0$	(d) $\vec{r} \cdot \vec{T} = 0$ and $\vec{F} \cdot \vec{T} =$	0
44.		•	s disintegration rate 500 ninute. Then, the decay of	0 disintegrations per minute. After 5 minconstant (per minute) is
	(a) 0.4 ln 2	(b) 0.2 ln 2	(c) 0.1 ln 2	(d) 0.8 ln 2
45.	A nucleus with Z	L = 92 emits the following	g in a sequence:	
	$\alpha, \beta^-, \beta^- \alpha, \alpha, \alpha, \alpha$	$\alpha, \alpha, \beta^-, \beta^-, \alpha, \beta^+, \beta^+, \alpha . T$	Then Z of the resulting n	ucleus is
	(a) 76	(b) 78	(c) 82	(d) 74
46.		otocathodes receive light out are respectively v ₁ a		If the velocities of the photo electrons (of
	(a) $v_1^2 - v_2^2 = \frac{2h}{m}$	$(\mathbf{f}_1 - \mathbf{f}_2)$	(b) $V_1 + V_2 = \left[\frac{2h}{m} (f_1 + \frac{h}{m})^2 \right]$	$\left[\mathbf{f}_{2}\right] ^{1/2}$
	(c) $V_1^2 + V_2^2 = \frac{2h}{m}$	$\cdot (f_1 + f_2)$	(d) $v_1 - v_2 = \left[\frac{2h}{m} (f_1 - f_2) \right]$	$\left[\mathbf{f}_{2} \right]^{1/2}$
47.	Which of the foll	owing cannot be emitted	l by radioactive substanc	ces during their decay?
	(a) Protons	(b) Neutrinoes	(c) Helium nuclei	(d) Electrons
48.	A 3 volt battery current I, in the ci		resistance is connected	I in a circuit as shown in the figure. The
		T	$\frac{3\Omega}{2}$.3Ω Z
49.	(a) 1 A A sheet of alumin tance of the capac		(c) 2 A ickness is introduced bet	(d) 1/3 A ween the plates of a capacitor. The capaci-
	(a) decreases	(b) remains unchanged	(c) becomes infinite	(d) increases
	. ,			5

40. When the current changes from +2A to -2A in 0.05 second, an e.m.f. of 8V is induced in a coil. The

43. Let \vec{F} be the force acting on a particle having position vector \vec{r} and \vec{T} be the torque of this force about the

In an oscillating LC circuit the maximum charge on the capacitor is Q. The charge on the capacitor when the

(d) 0.1 H

(d) Q

(b) make it light weight

(d) increase the secondary voltage

(c) 0.8 H

coefficient of self-induction of the coil is

(b) 0.4 H

(b) $\frac{Q}{\sqrt{2}}$

42. The core of any transformer is laminated so as to (a) reduce the energy loss due to eddy currents

(c) make it robust and strong

energy is stored equally between the electric and magnetic field is

(a) 0.2 H

(a) $\frac{Q}{2}$

41.

	(a) $\frac{2Q}{4\pi\epsilon_0 R}$	(b) $\frac{2Q}{4\pi\epsilon_0 R} - \frac{2q}{4\pi\epsilon_0 R}$	(c) $\frac{2Q}{4\pi\epsilon_0 R} + \frac{q}{4\pi\epsilon_0 R}$	(d) $\frac{(q+Q)2}{4\pi\epsilon_0 R}$
52.	The work done i	n placing a charge of 8>	< 10 ⁻¹⁸ coulomb on a con-	denser of capacity 100 micro-farad is
	(a) 16×10^{-32} joul	e (b) 3.1×10^{-26} joule	(c) 4×10^{-10} joule	(d) 32×10^{-32} joule
53.	particle at time 't	i' is given by		by $x = \alpha t^3$ and $y = \beta t^3$. The speed of the
	(a) $3t\sqrt{\alpha^2 + \beta^2}$	(b) $3t^2\sqrt{\alpha^2+\beta^2}$	(c) $t^2 \sqrt{\alpha^2 + \beta^2}$	(d) $\sqrt{\alpha^2 + \beta^2}$
54.	•	atic process, the pressure ratio C_p/C_v for the gas	•	be proportional to the cube of its absolute
	(a) $\frac{4}{3}$	(b) 2	(c) $\frac{5}{3}$	(d) $\frac{3}{2}$
55.	Which of the foll	lowing parameters does	not characterize the ther	modynamic state of matter?
	(a) temperature	(b) Pressure	(c) Work	(b) Volume
56.	A Carnot engine done by the engi		t from a reservoir at 627 ⁰	C, and gives it to a sink at 27°C. The work
	(a) $4.2 \times 10^6 \text{ J}$	(b) $8.4 \times 10^6 \mathrm{J}$	(c) $16.8 \times 10^6 \mathrm{J}$	(d) Zero
57.		g constant 5×10^3 N/m is stretch it further by and		cm from the unstretched position. Then the
	(a) 12.50 N-m	(b) 18.75 N-m	(c) 25.00 N-m	(d) 6.25 N-m
58.	supports 1 metre	apart. The wire passes	at its middle point betwe	n a tension of 10 kg-wt between two rigid en the poles of a permanent magnet, and it uency n. The frequency n of the alternating
	(a) 50 Hz	(b) 100 Hz	(c) 200 Hz	(d) 25 Hz
59.	beat frequency d	ecreases to 2 beats per so piano string before incr	econd when the tension is	nd with the vibrating string of a piano. The n the piano string is slightly increased. The
	(a) $256 + 2 \text{ Hz}$	(b) 256 - 2 Hz	(c) 256 - 5 Hz	(d) $256 + 5$ Hz
60.	•	*		y (P.E), the kinetic energy (K.E) and total ch of the following statements is true?
	(a) K.E. is maxim	num when x = 0	(b) T.E is zero when a	x = 0
	(c) K.E is maxim	num when x is maximur	n (d) P.E. is maximum v	when $x = 0$
61.			-	repulsive potential energy between the two e heated to initiate the reaction is nearly
	[Boltzmann's Co	onstant $k = 1.38 \times 10^{-23} \text{J}$	J/K]	
	(a) 10^7 K	(b) 10^5 K	(c) 10^3 K	(d) 10 ⁹ K
				6

The displacement of a particle varies according to the relation $x = 4(\cos \pi t + \sin \pi t)$. The amplitude of the

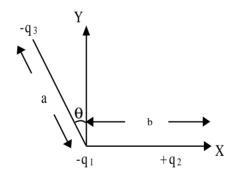
A thin spherical conducting shell of radius R has a charge q. Another charge Q is placed at the centre of the

(d) 8

(c) $4\sqrt{2}$

shell. The electrostatic potential at a point P a distance $\frac{R}{2}$ from the centre of the shell is

particle is


(b) 4

(a) -4

- 62. Which of the following atoms has the lowest ionization potential?
 - (a) $^{14}_{7}$ N
- (b) $^{133}_{55}$ Cs
- $(c)_{18}^{40} Ar$
- (d) $_{8}^{16}$ O
- 63. The wavelengths involved in the spectrum of deuterium $\binom{2}{1}$ D are slightly different from that of hydrogen spectrum, because
 - (a) the size of the two nuclei are different (b) the nuclear forces are different in the two cases
 - (c) the masses of the two nuclei are different
 - (d) the attraction between the electron and the nucleus is different in the two cases
- 64. In the middle of the depletion layer of a reverse biased p-n junction, the
 - (a) electric field is zero

- (b) potential is maximum
- (c) electric field is maximum
- (d) potential is zero
- 65. If the binding energy of the electron in a hydrogen atom is 13.6eV, the energy required to remove the electron from the first excited state of Li++ is
 - (a) 30.6eV
- (b) 13.6 eV
- (c) 3.4 eV
- (d) 122.4 eV
- 66. A body is moved along a straight line by a machine delivering a constant power. The distance moved by the body in time 't' is proportional to
 - (a) $t^{3/4}$

- (d) $t^{1/2}$
- 67. A rocket with a lift-off mass 3.5×10^4 kg is blasted upwards with an initial acceleration of 10m/s². Then the initial thrust of the blast is
 - (a) 3.5×10^5 N
- (b) 7.0×10^5 N
- (c) 14.0×10^5 N
- (d) 1.75×10^5 N
- 68. To demonstrate the phenomenon of interference, we require two sources which emit radiation
 - (a) of nearly the same frequency
- (b) of the same frequency
- (c) of different wavelengths
- (d) of the same frequency and having a definite phase relationship
- Three charges $-q_1$, $+q_2$ and $-q_3$ are placed as shown in the figure. The x-component of the force on $-q_1$ is proportional to

- (a) $\frac{q_2}{h^2} \frac{q_3}{a^2} \cos \theta$ (b) $\frac{q_2}{h^2} + \frac{q_3}{a^2} \sin \theta$
- (c) $\frac{q_2}{h^2} + \frac{q_3}{a^2} \cos \theta$ (d) $\frac{q_2}{h^2} \frac{q_3}{a^2} \sin \theta$
- 70. A 220 volt, 1000 watt bulb is connected across a 110 volt mains supply. The power consumed will be
 - (a) 750 watt
- (b) 500 watt
- (c) 250 watt
- (d) 1000 watt
- 71. The image formed by an objective of a compound microscope is
 - (a) virtual and diminished (b) real and diminished (c) real and enlarged (d) virtual and enlarged
- 72. The earth radiates in the infra-red region of the spectrum. The spectrum is correctly given by
 - (a) Rayleigh Jeans law

- (b) Planck's law of radiation
- (c) Stefan's law of radiation
- (d) Wien's law
- 73. To get three images of a single object, one should have two plane mirrors at an angle of
 - (a) 60°
- (b) 90°
- (c) 120°
- (d) 30°

74.	According to Newton's law of cooling, the rate of cooling of a body is proportional to $(\Delta\theta)^n$, where $\Delta\theta$) is
	the difference of the temperature of the body and the surroundings, and n is equal to	
	(a) two (b) three (c) four (d) one	
75.	The length of a given cylindrical wire is increased by 100% . Due to the consequent decrease in diameter change in the resistance of the wire will be	the
	(a) 200% (b) 100% (c) 50% (d) 300%	
76.	Which of the following could act as apropellant for rockets?	
	(a) Liquid oxygen + liquid argon (b) Liquid hydrogen + liquid oxygen	
	(c) Liquid nitrogen + liquid oxygen (d) Liquid hydrogen + liquid nitrogen	
77.	The reaction of chloroform with alcoholic KOH and p-toluidine forms	
	(a) H_3C \longrightarrow N_2Cl (b) H_3C \longrightarrow $NHCHCl_2$ (c) H_3C \longrightarrow NC (d) H_3C \longrightarrow CN	
78.	•	
	(a) polyester polymer (b) polyamide polymer (c) polyethylene polymer (d) polyvinyl polymer	r
79.	The correct order of increasing basic nature for the bases NH ₃ , CH ₃ NH ₂ and (CH ₃) ₂ NH is	
	(a) $(CH_3)_2NH < NH_3 < CH_3NH_2$ (b) $NH_3 < CH_3NH_2 < (CH_3)_2NH$	
	(c) $CH_3NH_2 < (CH_3)_2NH < NH_3$ (d) $CH_3NH_2 < NH_3 < (CH_3)_2NH$	
80.	Bottles containing C ₆ H ₅ l and C ₆ H ₅ CH ₂ I lost their original labels. They were labelled A and B for testing and B were separately taken in test tubes and boiled with NaOH solution. The end solution in each tube was made acidic with dilute HNO ₃ and then some AgNO ₃ solution was added. Substance B gave a yell precipitate. Which one of the following statements is true for this experiment?	vas
	(a) A and $C_6H_5CH_2I$ (b) B and C_6H_5I	
	(c) Addition of HNO_3 was unnecessary (d) A was C_6H_5I	
81.82.	to B by a reversible path and returns to state A by an irreversible path what would be the net change in internal energy (a) $> 40 \text{ kJ}$ (b) $< 40 \text{kJ}$ (c) Zero (d) 40 kJ If at 298 K the bond energies of C-H, C-C, C = C and H-H bonds are respectively 414, 347, 615 and 435 mol ⁻¹ , the value of enthalpy change for the reaction $H_2C = CH_2(g) + H_2(g) \rightarrow H_3C - CH_3(g)$ at 298 K will	gy? kJ
	(a) -250 kJ (b) $+125 \text{ kJ}$ (c) -125 kJ (d) $+250 \text{ kJ}$	
83.	90	m-
	ber and the mass number respectively of the resulting radionucleide are	
84.	(a) 94 and 230 (b) 90 and 230 (c) 92 and 230 (d) 92 and 234 The half-life of a radioactive isotope is three hours. If the initial mass of the isotope were 256 g, the mass it remaining undecayed after 18 hours would be	of
05	(a) 8.0 g (b) 12.0 g (c) 16.0 g (d) 4.0 g	
85.	If liquids A and B form an ideal solution (a) the entropy of mixing is zero (b) the free energy of mixing is zero	
	(c) the free energy as well as the entropy of mixing are each zero (d) the enthalpy of mixing is zero	
86.	The radius of La ³⁺ (Atomic number of La = 57) is 1.06Å. Which one of the following given values will	be
	closest to the radius of Lu^{3+} (Atomic number of $Lu = 71$)?	
07	(a) 1.40Å (b) 1.06Å (c) 0.85Å (d) 1.60Å	1
87.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with copper ions in alkaline solutions but not in acidic so tions. What is the reason for it?	lu-
	(a) In acidic solutions protons coordinate with ammonia molecules forming NH ₄ ions and NH ₃ molecu	les
	are not available	5
	(b) In alkaline solutions insoluble Cu(OH) ₂ is precipitated which is soluble in excess of any alkali	
	(c) Copper hydroxide is an amphoteric substance	
	(d) In acidic solutions hydration protects copper ions.	

88.		$_{3}$, gives 3 moles of ions on dissolution in water. One moles of AgCl (s). The structure $_{3}$				
	-	NH_{3} (c) $[Co(NH_{3})_{4}Cl]Cl_{2}$. NH_{3} (d) $[Co(NH_{3})_{5}Cl]$ (Cl,			
89	In the coordination compound, $K_4[Ni(CN)_4]$, the o	3. 2 3	2			
	(a) 0 (b) $+1$ (c) $+2$	(d) -1				
90.		` '				
	(a) developing interlocking needle-like crystals of	-				
	(b) hydrating sand and gravel mixed with cement					
		ping it cool				
91.						
,	(a) $pH + pOH = 14$ for all aqueous solutions	(b) The pH of 1×10^{-8} M HCI is 8				
	-	hrough a CuSO ₄ solution deposits 1 gram equivalent	of			
	(d) The conjugate base of H ₂ PO ₄ is HPO ² - ₄					
92.	On mixing a certain alkane with chlorine and monochloroalkane. This alkane could be	irradiating it with ultravioletlight, it forms only o	ne			
	(a) pentane (b) isopentane (c) neop	pentane (d) propane				
93.	Butene-1 may be converted to butane by reaction	with				
	(a) Sn - HCI (b) Zn - Hg (c) $\operatorname{Pd/I}$	H_2 (d) $Zn - HCI$				
94.	What may be expected to happen when phosphine	e gas is mixed with chlorine gas?				
	(a) PCI ₃ and HCI are formed and the mixture warms up					
	(b) PCI ₅ and HCI are formed and the mixture cool	ls down				
	(c) PH ₃ .Cl ₂ is formed with warming up	(d) The mixture only cools down				
95.	The number of d-electrons retained in Fe ²⁺ (At.no.	of $Fe = 26$) ion is				
	(a) 4 (b) 5 (c) 6	(d) 3				
96.	Concentrated hydrochloric acid when kept in ope explanation for it is that	en air sometimes produces a cloud of white fumes. T	'he			
	(a) oxygen in air reacts with the emitted HCI gas t	o form a cloud of chlorine gas				
	(b) strong affinity of HCI gas for miosture in air results in forming of droplets of liquid solution which appears like a cloudy smoke.					
	(c) due to strong affinity for water, concentrated by moisture forms droplets of water and hence the clo	ydrochloric acid pulls moisture of air towards it self. Toud.	his			
	(d) concentrated hydrochloric acid emits strongly	smelling HCI gas all the time.				
97.	An ether is more volatile than an alcohol having the	ne same molecular formula. This is due to				
	(a) alcohols having resonance structures (b) inter-	r-molecular hydrogen bonding in ethers				
	(c) inter-molecular hydrogen bonding in alcohols	(d) dipolar character of ethers				
98.	Graphite is a soft solid lubricant extremely difficul graphite	It to melt. The reason for this anomalous behaviour is the	hat			
	(a) is an allotropic form of diamond (b) has a	molecules of variable molecular masses like polymers				
	(c) has carbon atoms arranged in large plates of rings	of strongly bound carbon atoms with weak interplate bond	S			
	(d) is a non-crystalline substance					
99.	According to the Periodic Law of elements, the va	riation in properties of elements is related to their				

(a) nuclear masses (b) atomic numbers (c) nuclear neutron-proton number ratios

(d) atomic masses

100.). Which one of the following statements is correct?				
	(a) From a mixed	precipitate of AgCl and	d AgI, ammonia solution	dissolves only AgCl	
	(b) Ferric ions give a deep green precipitate on adding potassium ferrocyanide solution				
	(c) On boiling a solution having K^+ , Ca^{2+} and HCO_3^- ions we get a precipitate of $K_2Ca(CO_3)_2$.				
			pead test in the reducing	2 5 2	
101.	Glass is a	C	C		
	(a) super-cooled li	iquid (b) gel	(c) polymeric mixture	(d) micro-crystalline solid	
102.	The orbital angula	ır momentum for an ele	ctron revolving in an orb	it is given by $\sqrt{l(l+1)}$. $\frac{h}{2\pi}$. This momentum	
	for an s-electron v	will be given by			
		h	<u>, 7</u> h	1 h	
	(a) zero	(b) $\frac{1}{2\pi}$	(c) $\sqrt{2} \cdot \frac{h}{2\pi}$	(d) $+\frac{1}{2} \cdot \frac{1}{2\pi}$	
103.		ells are present in a cub Na = 23, Cl = 35.5]	peshaped ideal crystal of	NaCl of mass 1.00 g?	
	(a) 5.14×10^{21} unit	t cells	(b) 1.28×10^{21} unit cell	ls	
	(c) 1.71×10^{21} unit	t cells	(d) 2.57×10^{21} unit cell	ls	
104.	In the anion HCO	O- the two carbon-oxy	gen bonds are found to be	e of equal length. What is the reason for it?	
	(a) The $C = O$ bor	nd is weaker than the (C-O bond		
	(b) The anion HC	OO- has two resonatin	g structures		
	(c) The anion is of	btained by removal of	a proton from the acid m	olecule	
		itals of carbon atom are	•		
105.			cs is not correct for phys:	ical adsorption?	
		creases with incresae in	= -	1	
	(b) Adsorption is s		1	entropy of adsorption are negative	
	•	solids is reversible	13		
106.	For a cell reaction		•	e.m.f. of the cell is found to be 0.295 V at	
	(a) 29.5×10^{-2}	(b) 10	(c) 1×10^{10}	(d) 1×10^{-10}	
107.	` '	· /		which only pressure-volume work is being	
1071	done, the change i	in Gibbs free energy (c	lG) and change in entrop	y (dS), satisfy the criteria	
	- 7-			$= 0, (dG)_{T,P} > 0$ (d) $(dS)_{V,E} < 0, (dG)_{T,P} < 0$	
108.			~	-1. Its solubility product number will be	
	(a) 4×10^{-10}	(b) 1×10^{-15}	(c) 1×10^{-10}	(d) 4×10^{-15}	
109.				will be consumed in obtaining 21.6 g of on trichloride by hydrogen?	
	(a) 67.2 L	(b) 44.8 L	(c) 22.4 L	(d) 89.6 L	
110.	For the reaction ed	quilibrium $N_2O_4(g)$	\Rightarrow 2 NO ₂ (g) the concentr	rations of N ₂ O ₄ and NO ₂ at equilibrium are	
	4.8×10^{-2} and 1.2×10^{-2}	< 10⁻² mol L⁻¹ respectiv	ely. The value of K_c for t	he reaction is	
	(a) $3 \times 10^{-1} \text{ mol L}^{-1}$	1 (b) 3×10^{-3} mol L^{-1}	(c) $3 \times 10^3 \text{ mol } L^{-1}$	(d) $3.3 \times 10^2 \text{ mol } L^{-1}$	
111.		ion equilibrium 2SO ₂ (g dition favourable for th	_	$H^0 = -198 \text{ kJ}$. On the basis of Le Chatelier's	
	-	aperature as well as pre		e temperature and increasing the pressure	
		emperature and pressur		temperature as well as pressure	
	(c) any value of te	imperature and pressur		(10)	

g the rec ar on the
2 V. The
as 1.85
oplating
volt. E _{ce}
correct ⁶
l ketone
nolecule
nolecule
th

126.	What would happen when a solution of po	otassium chromate is tre	ated with an excess of dilute nitric acid?		
	(a) Cr_2O^{2-} and H_2O are formed	(b) CrO ² - ₄ is reduced to	+3 state of Cr		
	(c) CrO ²⁻ ₄ is oxidized to +7 state of Cr	(d) Cr^{3+} and Cr_2O^{2-} are	formed		
127.	For making good quality mirrors, plates o over a liquid metal which does not solidif	_			
	(a) tin (b) sodium	(c) magnesium	(d) mercury		
128.	The substance not likely to contain CaCC	O_3 is			
	(a) calcined gypsum (b) sea shells	(c) dolomite	(d) a marble statue		
129.	Complete hydrolysis of cellulose gives				
	(a) D-ribose (b) D-glucose	(c) L-glucose	(d) D-fructose		
130.	Which one of the following nitrates will le	eave behind a metal on s	trong heating?		
	(a) Copper nitrate (b) Manganese nitrate	(c) Silver nitrate	(d) Ferric nitrate		
131.	During dehydration of alcohols to alkene	s by heating with conc. H	I ₂ SO ₄ the initiation step is		
	(a) formation of carbocation	(b) elimination of water	c		
	(c) formation of an ester	(d) protonation of alcoh	nol molecule		
132.	The solubilities of carbonates decrease do	own the magnesium grou	p due to a decrease in		
	(a) hydration energies of cations	(b) inter-ionic attraction	1		
	(c) entropy of solution formation (d) lattice energies of solids				
133.	When rain is accompanied by a thunderst	orm, the collected rain w	vater will have a pH value		
	(a) slightly higher than that when the thunderstorm is not there				
	(b) uninfluenced by occurence of thunderstorm				
	(c) which depends on the amount of dust	in air			
	(d) slightly lower than that of rain water w	ithout thunderstorm			
134.	The reason for double helical structure of	DNA is operation of			
	(a) dipole-dipole interaction (b) hydrogen	bonding (c) electrostati	c attractions (d) van der Waals' forces		
135.	25~ml of a solution of barrium hydroxide litre value of $35~ml$. The molarity of bariu				
	(a) 0.14 (b) 0.28	(c) 0.35	(d) 0.07		
136.	The correct relationship between free ene stant $K_{\rm c}$ is	ergy change in a reaction	and the corresponding equilibrium con-		
	(a) $-\Delta G = RT \ln K_c$ (b) $\Delta G^0 = RT \ln K_c$	(c) $-\Delta G^0 = RT In K$	Δ_{c} (d) $\Delta G = RT \ln K_{c}$		
137.	The rate law for a reaction between the su concentration of A and halving the concernation will be as				
	(a) $(m + n)$ (b) $(n - m)$	(c) $2^{(n-m)}$	(d) $\frac{1}{2^{(m+n)}}$		
138	Ethyl isocyanide on hydrolysis in acidic n	nedium generates	-		
130.	(a) propanoic acid and ammonium salt	(b) ethanoic acid and ar	mmonium salt		
	(c) methylamine salt and ethanoic acid	(d) ethylamine salt and			
139	The enthalpy change for a reaction does r	• •	methanole deld		
10).	(a) use of different reactants for the same		e nature of intermediate reaction steps		
	(c) the differences in initial or final temper	• '	•		
	(d) the physical states of reactants and pro		anoco		
	(a) the physical states of reactants and pro	auoto			

140.	A pressure cooker reduces cooking time	for food because	
	(a) boiling point of water involved in cool	king is increased	
	(b) the higher pressure inside the cooker of	crushes the food materia	1
	(c) cooking involves chemical changes he	elped by a rise in temper	ature
	(d) heat is more evenly distributed in the	cooking space	
141.			uddenly reduce to half its value by increasto O ₂ and second order with respect to NO,
	(a) diminish to one-eighth of its initial val	lue	
	(b) increase to eight times of its initial val	ue	
	(c) increase to four times of its initial value	ie	
	(d) diminish to one-fourth of its initial val	ue	
142.	Several blocks of magnesium are fixed to	the bottom of a ship to	
	(a) make the ship lighter		
	(b) prevent action of water and salt		
	(c) prevent puncturing by under-sea rocks	S	
	(d) keep away the sharks		
143.	Which one of the following pairs of mole	cules will have permane	ent dipole moments for both members?
	(a) NO_2 and CO_2 (b) NO_2 and O_3	(c) SiF ₄ and CO ₂	(d) SiF ₄ and NO ₂
144.	Which one of the following groupings rep	presents a collection of i	soelectronic species? (At. nos,: 55, Br:35)
	(a) N^{3-} , F^{-} , Na^{+} (b) Be, Al^{3+} , Cl^{-}	(c) Ca ²⁺ , Cs ⁺ , Br	(d) Na^+ , Ca^{2+} , Mg^{2+}
145.	Which one of the following processes wi	ll produce hard water?	
	(a) Saturation of water with MgCO ₃		
	(b) Saturation of water with CaSO ₄		
	(c) Addition of Na ₂ SO ₄ to water		
	(d) Saturation of water with CaCO ₃		
146.	Which one of the following compounds h	nas the smallest bond an	gle in its molecule?
	(a) OH_2 (b) SH_2	(c) NH_3	(d) SO_2
147.	The pair of species having identical shape	es for molecules of both	species is
	(a) XeF ₂ , CO ₂	(b) BF ₃ , PCl ₃	
	(c) PF_5 , IF_5	(d) CF_4 , SF_4	
148.	24, 25 and 26. Which one of these may be	e expected to have the h	•
	(a) Cr (b) Mn	(c) Fe	(d) V
149.	In Bohr series of lines of hydrogen spectr following inter-orbit jumps of the electro		he red end corresponds to which one of the tom of hydrogen
	(a) $5 \rightarrow 2$ (b) $4 \rightarrow 1$	(c) $2 \rightarrow 5$	$(d) 3 \rightarrow 2$
150.	The de Broglie wavelength of a tennis ba approximately	all of mass 60 g moving	with a velocity of 10 metres per second is
	(a) 10 ⁻³¹ metres		
	(b) 10 ⁻¹⁶ metres		
	(c) 10 ⁻²⁵ metres		
	(d) 10^{-33} metres Planck's constant, $h = 6.6$	$63 \times 10^{-34} \text{ Js.}$	

AIEEE 2003

MATHEMATICS

- Let $\frac{d}{dx}F(x) = \left(\frac{e^{\sin x}}{x}\right)x > 0$. If $\int_{x}^{4} \frac{3}{x}e^{\sin x^{3}}dx = F(k) F(1)$ then one of the possible values of k, is
 - (a) 64
- (b) 15
- (c) 16
- (d) 63
- The median of a set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is 2. increased by 2, then median of the new set
 - (a) remains the same as that of the original set

(b) is increased by 2

(c) is decreased by 2

(d) is two times the original median

- $\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots n^4}{5} \lim_{n \to \infty} \frac{1 + 2^3 + 3^3 + \dots n^3}{5}$
- (b) $\frac{1}{20}$

- The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 2bt₂), then
- (a) $t_2 = t_1 + \frac{2}{t_1}$ (b) $t_2 = -t_1 \frac{2}{t_1}$ (c) $t_2 = -t_1 + \frac{2}{t_1}$ (d) $t_2 = t_1 \frac{2}{t_1}$
- If the two circles $(x-1)^2 + (y-3)^2 = r^2$ and $x^2 + y^2 8x + 2y + 8 = 0$ intersect in two distinct point, then 5.
 - (a) r > 2
- (b) 2 < r < 8

- The degree and order of the differential equation of the family of all parabolas whose axis is X-axis, are respectively.
 - (a) 2, 3
- (b) 2, 1
- (c) 1.2
- The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is
 - (a) 9
- (b) 1

(c)5

- (d)7
- If $f(y) = e^y$, g(y) = y; y > 0 and $F(t) = \int_{0}^{t} f(t y)g(y)$, then

 - (a) $F(t) = te^{-t}$ (b) $F(t) = 1 te^{-t} (1 + t)$ (c) $F(t) = e^{t} (1 + t)$ (d) $F(t) = te^{t}$.

- The function $f(x) = \log \left(x + \sqrt{x^2 + 1} \right)$, is
 - (a) neither an even nor an odd function

(b) an even function

(c) an odd function

- (d) a periodic function
- 10. If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their
 - reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in
 - (a) Arithmetic Geometric Progression
- (b) Arithmetic Progression
- (c) Geometric Progression
- (d) Harmonic Progression
- 11. If the system of linear equations

$$x + 2ay + az = 0$$

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c

- (a) satisfy a + 2b + 3c = 0
- (b) are in A.P.
- (c) are in G.P.
- (d) are in H.P.

				(1		
	(a) 6 sq. units	(b) 2 sq. units	(c) 3 sq. units	(d) 4 sq. units		
23.			the curves $y = x - 1 $ and $y = 3$			
	(a) $\sqrt{288}$	(b) $\sqrt{18}$	(c) $\sqrt{72}$	(d) $\sqrt{33}$		
	A is					
22.	, ,	, ,	, ,	ngle ABC. The length of the median through		
21.	A particle acted the forces is (a) 50 units	on by constant force (b) 20 units	s $4i + j - 3k$ and $3i + j - k$ to (c) 30 units	the point $5\hat{i} + 4\hat{j} - \hat{k}$. The total work done by (d) 40 units		
	(a) 3	(b) 0	(c) 1	(d) 2		
20.				that $\vec{u}.\hat{n} = 0$ and $\vec{v}.\hat{n} = 0$, then $ \vec{w}.\hat{n} $ is equal		
	` '	(b) 2 ⁿ	` '			
19.			$\frac{f'(1)}{1!} + \frac{f'''(1)}{2!} - \frac{f'''(1)}{3!} + \dots$			
	(a) $\frac{1}{4}$	(b) $\frac{1}{32}$	(c) $\frac{1}{16}$	(d) $\frac{1}{8}$		
18.	The mean and va $(X = 1)$ is	ariance of a random v	variable X having binomia	al distribution are 4 and 2 respectively, then		
	(a) 2:3:1		(c) 2:3:2	(d) 1:2:3		
	The resultant of forces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q} is doubled then \vec{R} is doubled. If the direction of \vec{Q} is reversed, then \vec{R} is again doubled. Then $P^2: Q^2: R^2$ is					
17.						
	moment of coup	le becomes	(c) H sinα+G cosα			
16.	_			s \vec{P} . If \vec{P} is turned through a right angle the \vec{P} are turned through an angle α , then the		
	(a) $-\frac{2}{3}$	(b) 0	(c) $-\frac{1}{3}$	(d) $\frac{2}{3}$		
5.	If $\lim_{x\to 0} \frac{\log(3+x)-1}{x}$	$\frac{\log(3-x)}{\ln x} = k$, the value	ue of k is			
	(c) $(3x - 1)^2 + (3x - 1)^2$		(d) $(3x + 1)^2 + (3y)^2$			
	parameter, is (a) $(3x + 1)^2 + (3x + 1)^2 $		(b) $(3x - 1)^2 + (3y)^2$			
14.	(a) pq = -1 Locus of a centr	(b) $p = q$ iod of the triangle wh	(c) $p = -q$ nose vertices are (a cos t, a	(d) $pq - 1$ sin t), (b sin t, -b cost) and (1, 0), where t is		
	(-) - 1	er pair, then	(-)	(4) 1		

12. A square of side a lies above the x-axis and has one vertex at the origin. The side passing through the origin

(a) $y(\cos \alpha + \sin \alpha) + x(\cos \alpha - \sin \alpha) = a$ (b) $y(\cos \alpha - \sin \alpha) - x(\sin \alpha - \cos \alpha) = a$

through the origin is

makes an angle $\alpha \left(0 < \alpha < \frac{\pi}{4}\right)$ with the positive direction of x-axis. The equation of its diagonal not passing

	(a) $a a' + c c' + 1 = 0$	(b) a a' + b b' + c c' +	1=0		
	(c) $aa' + bb' + cc' = 0$	(d) $(a + a') (b + b') + (c + c') = 0$			
26.	The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-3}{k}$	$\frac{1}{1} = \frac{y-4}{1} = \frac{z-5}{1}$ are cop	lanar if		
	(a) $k = 3 \text{ or } -2$ (b) $k = 0 \text{ or } -1$	(c) $k = 1$ or -1	(d) $k = 0$ or -3		
27.	If $f(a + b - x) = f(x)$ then $\int_{a}^{b} xf(x)dx$ is ea	qual to			
	(a) $\frac{a+b}{2} \int_{a}^{b} f(a+b-x) dx$ (b) $\frac{a+b}{2} \int_{a}^{b} f(b-x) dx$	$-x)dx$ (c) $\frac{a+b}{2}\int_{a}^{b}f(x)dx$	$(d) \frac{b-a}{2} \int_{a}^{b} f(x) dx$		
28.	A body travels a distance s in t seconds. moves with constant acceleration f and in the		ds at rest. In the first part of the journey, it retardation r. The value of t is given by		
	(a) $\sqrt{2s\left(\frac{1}{f} + \frac{1}{r}\right)}$ (b) $2s\left(\frac{1}{f} + \frac{1}{r}\right)$	(c) $\frac{2s}{\frac{1}{f} + \frac{1}{r}}$	(d) $\sqrt{2s(f+r)}$		
29.	Two stones are projected from the top of a cliff h metres high, with the same speed u, so as to hit the ground at the same spot. If one of the stones is projected at an angle θ to the horizontal then the θ equals				
	(a) $u\sqrt{\frac{2}{gh}}$ (b) $\sqrt{\frac{2u}{gh}}$	(c) $2g\sqrt{\frac{u}{h}}$	(d) $2h\sqrt{\frac{u}{g}}$		
30.	If 1, ω , ω^2 are the cube roots of unity, th	en $\Delta = \begin{vmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{vmatrix}$	is equal to		
	(a) ω^2 (b) 0	(c) 1	(d) ω		
31.	The sum of the radii of inscribed and circ				
	(a) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$ (b) $a \cot \left(\frac{\pi}{n} \right)$	(c) $\frac{a}{2}\cot\left(\frac{\pi}{2n}\right)$	(d) $a \cot \left(\frac{\pi}{2n}\right)$		
32.	If x_1 , x_2 , x_3 and y_1 , y_2 , y_3 are both in G.P. y_3)	with the same common ra	atio, then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_2)		
	(a) are vertices of a triangle (b) lie on a	straight line (c) lie on ar	n ellipse (d) lie on a circle		
33.	If z and ω are two non-zero complex nu	mbers such that $ z\omega =1$ and	and $\operatorname{Arg}(z) - \operatorname{Arg}(\omega) = \frac{\pi}{2}$, then $\overline{z}\omega$ is equal to		
	(a) -i (b) 1	(c)-1	(d) i.		
34.			omplex. Further, assume that the origin, Z_1		
	and Z_2 form an equilateral triangle. Ther (a) $a^2 = 4b$ (b) $a^2 = b$		(d) $a^2 = 3b$		
			(16)		

The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$ is

(d) 13

(c) $11\frac{4}{13}$

25. The two lines x = ay + b, z = cy + d and x = a'y + b'z = c'y + d' will be perpendicular, if and only if

(a) 39

(b) 26

35.	The solution of the differential equation $(1+y^2) + (x - e^{\tan^{-1}y}) \frac{dy}{dx} = 0$, is					
	(a) $xe^{2tan^{-1}y} = e^{tan^{-1}y} + k$ (b) $(x-2) = ke^{2tan^{-1}y}$ (c) $2xe^{tan^{-1}y} = e^{2tan^{-1}y} + k$ (d) $xe^{tan^{-1}y} = tan^{-1}y + k$					
36.	Let f(x) be a funct	tion satisfying $f'(x) = f(x)$	x) with $f(0) = 1$ and $g(x)$	be a function that satisfies $f(x) + g(x) = x^2$.		
	Then the value of	Then the value of the integral $\int_{0}^{1} f(x)g(x)dx$, is				
	(a) $e + \frac{e^2}{2} + \frac{5}{2}$	(b) $e - \frac{e^2}{2} - \frac{5}{2}$	(c) $e + \frac{e^2}{2} - \frac{3}{2}$	(d) $e - \frac{e^2}{2} - \frac{3}{2}$		
37.	The lines $2x - 3y = 0$ of the circle is	= 5 and $3x - 4y = 7$ are d	iameters of a circle havin	ng area as 154 sq. units. Then the equation		
	(a) $x^2 + y^2 - 2x +$	•	(b) $x^2 + y^2 + 2x - 2y =$			
	(c) $x^2 + y^2 + 2x$ -	$x^2 + y^2 + 2x - 2y = 47$ (d) $x^2 + y^2 - 2x + 2y = 47$				
38.	Events A, B, C are mutually exclusive events such that $P(A) = \frac{3x+1}{3}$, $P(B) = \frac{x-1}{4}$ and $P(C) = \frac{1-2x}{4}$. The					
		lues of x are in the inter-				
	(a) [0, 1]	(b) $\left[\frac{1}{2}, \frac{1}{2}\right]$	(c) $\left[\frac{1}{3}, \frac{2}{3}\right]$	(d) $\left[\frac{1}{2}, \frac{13}{2}\right]$		
39.	Five horses are in a race. Mr. A selects two of the horses at random and bets on them. The probability that Mr. A selected the winning horse is					
	(a) $\frac{2}{5}$	(b) $\frac{4}{5}$	(c) $\frac{3}{5}$	(d) $\frac{1}{5}$		
40.	The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3)x^3 + (3a - 1)x + 2 = 0$ is twice as large as the other is					
	(a) $-\frac{1}{3}$	(b) $\frac{2}{3}$	(c) $-\frac{2}{3}$	(d) $\frac{1}{3}$		
41.	If x is positive, th	e first negative term in t	the expansion of $(1 + x)^2$	^{27/5} is		
	(a) 6th term	(b) 7th term	(c) 5th term	(d) 8th term		
42.	The number of integral terms in the expansion of $(\sqrt{3} + 8\sqrt{5})^{256}$ is					
	(a) 35	(b) 32	(c) 33	(d) 34		
43.	If ⁿ C _r denotes the equals	If ${}^{n}C_{r}$ denotes the number of combination of n things taken r at a time, then the expression ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2x^{n}C_{r}$ equals				
	(a) ${}^{n+1}C_{r+1}$	(b) $^{n+2}C_r$	$(c)^{n+2}C_{r+1}$	$(d)^{n+1}C_r$		
44.	Two particles start simultaneously from the same point and move along two straight lines, one with uniform velocity \vec{u} and the other from rest with uniform acceleration \vec{f} . Let α be the angle between their directions					
	of motion. The relative velocity of the second particle w.r.t. the first is least after a time.					
	(a) $\frac{dodax}{f}$	(b) $\frac{\text{usin}\alpha}{f}$	(c) $\frac{10000}{u}$	(d) $u \sin \alpha$.		
45.	The upper $\frac{3}{4}$ th portion of a vertical pole subtends an angle $\tan^{-1}\frac{3}{5}$ at a point in the horizontal plane through					
	its foot and at a distance 40 m from the foot.					
	(a) 80 m	(b) 20 m	(c) 40 m	(d) 60 m		

47.	If in a triangle ABC a $\cos^2\left(\frac{C}{2}\right) + \cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides a, b and c					
	(a) satisfy a+ b =	c (b) are in A.P.	(c) are in G.P.	(d) are in H.P.		
48.	$\vec{a}, \vec{b}, \vec{c}$ are 3 vector	rs, such that $\vec{a} + \vec{b} + \vec{c} = 0$,	$ \vec{a} = 1$, $ \vec{b} = 2 \vec{c} $ then $\vec{a} \cdot \vec{b} +$	$\vec{b}.\vec{c} + \vec{c}.\vec{a}$ is equal to		
	(a) 1	(b) 0	(c) -7	(d) 7		
49.	The value of the	integral $I = \int_{0}^{1} x(1-x)^{n} dx$	is			
	(a) $\frac{1}{n+1} + \frac{1}{n+2}$	(b) $\frac{1}{n+1}$	(c) $\frac{1}{n+2}$	(d) $\frac{1}{n+1} - \frac{1}{n+2}$		
	The value of $\lim_{x\to 0}$	$\int_{-\infty}^{x^2} \sec^2 t dt$				
50.	The value of $\lim_{x\to 0}$	$\frac{0}{x \sin x}$ is				
	(a) 0	(b) 3	(c) 2	(d) 1		
51.		circle in which the sphe				
			by the plane $x + 2y + 2z$			
52.	(a) 4 A tetrahedron ha	(b) 1 as vertices at O(0, 0, 0).	(c) 2 A(1, 2, 1) B(2, 1, 3) and	(d) 3 l C(-1, 1, 2). Then the angle between the		
3 2 .	faces OAB and A		11(1, 2, 1) B(2, 1, 3) unc	i e(1, 1, 2). Then the tangle between the		
	(a) 90°	(b) $\cos^{-1}\left(\frac{19}{35}\right)$	$(c) \cos^{-1}\left(\frac{17}{31}\right)$	(d) 30°		
53.	Let $f(a) = g(a) =$	k and their nth deriva	atives f ⁿ (a), g ⁿ (a) exist a	and are not equal for some n. Further if		
	$\lim_{x \to a} \frac{f(a)g(x) - f(a)}{g(x)}$	$\frac{-g(a)f(x) + f(a)}{-f(x)} = 4 \text{ then then then}$	ne value of k is			
	(a) 0	(b) 4	(c) 2	(d) 1		
54.	$\lim_{x \to \frac{\pi}{2}} \left[1 - \tan\left(\frac{x}{2}\right) \right] \left[1$	$\frac{-\sin x}{\tau - 2x^3}$ is				
	(a) ∞	(b) $\frac{1}{8}$	(c) 0	(d) $\frac{1}{32}$		
55.	32					
	(a) $\sqrt{a_1^2 + b_1^2 - a_2^2 - a_2^2}$	$\overline{\mathbf{b}_{2}^{2}}$	(b) $\frac{1}{2}a_2^2 + b_2^2 - a_1^2 - b_1^2$			
	(c) $a_1^2 - a_2^2 + b_1^2 - b_2^2$	2 2	(d) $\frac{1}{2} \left(a_1^2 + a_2^2 + b_1^2 + b_2^2 \right)$			
				18)		

46. In a triangle ABC, medians AD and BE are drawn. If AD = 4, $\angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$, then the area of

(a) $\frac{64}{3}$ (b) $\frac{8}{3}$ (c) $\frac{16}{3}$ (d) $\frac{32}{3}$

the $\triangle ABC$ is

56.	If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} =$	0 and vectors (1, a, a ²),	(a, b, b^2) and $(a$	(c, c, c^2) are non-c	oplanar, then t	he product abc equals
	(a) 0	(b) 2	(c) -1	(d) 1		
57.	The number of re	eal solutions of the equa	tion $x^2 - 3 x + 3$	2 = 0 is		
	(a) 3	(b) 2	(c) 4	(d) 1		
58.	If the function $f(x) = 2x^2 - 9ax^2 + 12a^2x + 1$, where $a > 0$, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals					minimum at p and q
	(a) $\frac{1}{2}$	(b) 3	(c) 1	(d) 2		
59.	If $f(x) = \begin{cases} xe^{-\left(\frac{1}{ x } + \frac{1}{ x }\right)} \\ 0 \end{cases}$	$(x + \frac{1}{x})$, $x \ne 0$ then $f(x)$ is $x = 0$				
	(a) discontinuous	s every where	(1	b) continuous as	s well as differ	rentiable for all x
	(c) continuous for	r all x but not differentia	able at $x = 0$ ((d) neither differ	rentiable nor c	continuous at $x = 0$
		66	3 ,	, 3		
60.		tion of the function $f(x)$				
	(a) $(-1, 0) \cup (1, 1)$	2) \cup (2, ∞) (b) (0,	2)	(c) $(-1, 0) \cup (0, 0)$, 2)	(d) $(1, 2) \cup (2, \infty)$
61.	If $f: R \to R$ satisf	$\operatorname{ries} f(x+y) = f(x) + f(y)$), for all $x, y \in \mathbb{R}$	R and $f(1) = 7$,	then $\sum_{r=1}^{n} f(r)$	is
	(a) $\frac{7n(n+1)}{2}$	(b) $\frac{7n}{2}$	$(c) \frac{7(n+1)}{2}$	(d) 7s	n+(n+1)	
62.	The real number	x when added to its inve	erse gives the n	ninimum value o	of the sum at x	equal to
	(a) -2	(b) 2	(c) 1	(d) -1	1	
63.		pectively be the maxim zontal plane. Then R ₁ , I		and down an inc	lined plane ar	nd R be the maximum
	(a) H.P	(b) A.G.P	(c) A.P	(d) G	6.P.	
64.	In an experiment	with 15 observations or	n x, the following	ng results were a	available: $\sum_{\mathbf{X}}^2$	$z = 2830$, $\Sigma x = 170$
	One observation that was 20 was found to be wrong and was replaced by the correct value 30. The corrected variance is					
	(a) 8.33	(b) 78.00	(c) 188.66	(d) 1°	77.33	
65.		student is to answer 10 out of 13 questions in an examination such that he must choose at least 4 from the st five questions. The number of choices available to him is				
	(a) 346	(b) 140	(c) 196	(d) 2	80	
66.	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ an	and $A_2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then				
	(a) $\alpha = 2ab, \beta = a^2 + b^2$ (b) $\alpha = a_2 + b_2, \beta = ab$ (c) $\alpha = a^2 + b^2, \beta = 2ab$ (d) $\alpha = a^2 + b^2, \beta = a^2 - b^2$					
67.						
	(a) 7×5	(b) 6×5	(c) 30	(d) 5	5×4	
						(19)

Consider points A, B, C and D with position vectors $7\hat{i} - 4\hat{j} + 7\hat{k}$, $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 4\hat{k}$ and $5\hat{i} - \hat{j} + 5\hat{k}$ respectively. Then ABCD is a

(a) parallelogram but not a rhombus

- (b) square
- (c) rhombus
- (d) rectangle
- If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} \vec{w}) \cdot (\vec{u} \vec{v}) \times (\vec{v} \vec{w})$ equals
 - (a) $3\vec{u}.\vec{v}\times\vec{w}$
- (b) 0
- (c) $\vec{\mathbf{n}} \cdot \vec{\mathbf{v}} \times \vec{\mathbf{w}}$
- (d) $\vec{u}.\vec{w}\times\vec{v}$
- The trigonometric equation $\sin^{-1} x = 2\sin^{-1} a$ has a solution for

 - (a) $|a| \ge \frac{1}{\sqrt{2}}$ (b) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ (c) all real values of a (d) $|a| < \frac{1}{2}$
- Two system of rectangular axes have the same origin. If a plane cuts them at distances a,b,c and a',b',c' from
 - (a) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (b) $\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0$
 - (c) $\frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$ (d) $\frac{1}{a^2} \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$

72. If $\left(\frac{1+i}{1-i}\right)^x = 1$ then

(a) x = 2n+1, where n is any positive integer

- (b) x = 4n, where n is any positive integer
- (c) x = 2n, where n is any positive integer

- (d) x = 4n+1, where n is any positive integer
- A function f from the set of natural numbers to integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when n is odd} \\ \frac{n}{2}, & \text{when n is even} \end{cases}$

(a) neither one-one nor onto

- (b) one-one but not onto
- (c) onto but not one-one
- (d) one-one and onto both.
- Let f(x) be a polynomial function of second degree. If f(1) = f(-1) and a, b, c are in A.P, then f'(a), f'(c) are

(a) Arithmetic-Geometric Progression

- (b) A.P.
- (c) G.P.
- (d) H.P.

The sum of the series $\frac{1}{12} - \frac{1}{23} + \frac{1}{34}$up to ∞ is equal to

(a) $\log_e \left(\frac{4}{e}\right)$ (b) $2\log_e 2$

- (c) $\log_e 2-1$
- $(d) \log_a 2$