
AIEEE 2004 Question Paper

PHYSICS & CHEMISTRY (PART - I)

1.	Which one of the following represents the correct dimensions of the coefficient of viscosity? (a) [ML ⁻¹ T ⁻²] (b) [MLT ⁻¹] (c) [ML ⁻¹ T ⁻¹] (d) [ML ⁻² T ⁻²]
2.	A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement x is proportional to:
	(a) x^2 (b) e^x (c) x (d) $\log_e x$
3.	A ball is released from the top of a tower of height h metres. It takes T seconds to reach the ground. What is the position of the ball in T/3 seconds? (a) h/9 metre from the ground (b) 7h/9 metre from the ground (c) 8h/9 metre from the ground (d) 17h/18 metre from the ground
4.	If $A \times B = B \times A$, then the angle between A and B is: (a) π (b) $\pi/3$ (c) $\pi/2$ (d) $\pi/4$
5.	A projectle can have the same range R for two angles of projection. If T_1 and T_2 be the time of
	flights in the two cases, then the product of the two times of flights is directly proportional to: (a) $1/R^2$ (b) $1/R$ (c) R (d) R^2
6.	Which of the following statements is false for a particle moving in a circle with a constant angular speed? (a) The velocity vector is tangent to the circle (b) The acceleration vector is tangent to the circle (c) The acceleration vector points to the centre of the circle (d) The velocity and acceleration vectors are perpendicular to each other
7.	An automobile travelling with a speed of 60 km/h, can brake to stop within a distance of 20 m. If the car is going twice as fast, i.e. 120 km/h, the stopping distance will be: (a) 20 m (b) 40 m (c) 60 m (d) 80 m
8.	A machine gun fires a bullet of mass 40 g with a velocity 1200 ms ⁻¹ . The man holding it, can exert a maximum force of 144 N on the gun. How many bullets can he fire per second at the most? (a) One (b) Four (c) Two (d) Three
9.	Two masses $m_1 = 5$ kg and $m_2 = 4.8$ kg tied to a string are hanging over a light frictionless pulley. What is the acceleration of the masses when lift is free to move? (g = 9.8 m/s ²) (a) 0.2 m/s ² (b) 9.8 m/s ² (c) 5 m/s ² (d) 4.8 m/s ²
10.	A uniform chain of length 2 m is kept on a table such that a length of 60 cm hangs freely from the edge of the table. The total mass of the chain is 4 kg. What is the work done in pulling the entire chain on the table?
11.	(a) 7.2 J (b) 3.6 J (c) 120 J (d) 1200 J A block rests on a rough inclined plane making an angle of 30° with the horizontal. The coefficien of static friction between the block and the plane is 0.8. If the frictional force on the block is 10 N, the mass of the block (in kg) is (take $g = 10 \text{ m/s}^2$):
	(a) 2.0 (b) 4.0 (c) 1.6 (d) 2.5
12.	A force $\overset{\mathbf{r}}{F} = (5\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ N is applied over a particle which displaces it from its origin to the point

\bigcap	(b) directly proportion	al to both radius R an	nd velocity v	
		nal to both radius R	*	
24		•	proportional to velocity	V
24.	_	of different radii are c	smaller bubble till the	sizes become equal
			iller bubble till the sizes	-
	- · ·	smaller bubble to the		
	(d) there is no flow o	f air		
25.	period of oscillation of	f the bob is t_0 in air.		water with a period t, while the ree of water and given that the en t and o is true?
	(a) $t = t_0$	(b) $t = t_0/2$	$(C) t = 2t_0$	$(d) t = 4t_0$
26.	_	of a spring executes	simple harmonic moti	ion with a period t, while the on with the two springs in series
ļ	·	(b) $T = t^2 + t^2$	(c) $T^{-1} = t_1^1 + t_2^1$	(d) $T^{-2} = t^2 + t^2$
27.			nple harmonic motion i	
	(a) $\propto x$	(b) $\propto x^2$	(c) independent of x	(d) $\propto x^{1/2}$
	where x is the displace	cement from the mean	position.	
28.	The displacement y of	f a particle in a mediu	im can be expressed as	:
	$y = 10^{-6} \sin(100t + 20x)$	$(x + \frac{\pi}{4})$ m, where t is in	n second and x in metre	e. The speed of the wave is:
	(a) 2000 m/s	(b) 5 m/s	(c) 20 m/s	(d) 5π m/s
29.	A particle of mass m i	s attached to a spring (of spring constant k) and	l has a natural angular frequency
	ω_0 . An external force	e F(t) proportional to	$\cos \omega t \ (\omega \neq \omega_0)$ is app	lied to the oscillator. The time
		scillator will be propo		
	<u> </u>			
	(a) $\omega_0^2 - \omega^2$	(b) $m(\omega_0^2 - \omega^2)$	(c) $\frac{1}{m(\omega_0^2 + \omega^2)}$	(d) $\omega_0^2 + \omega^2$
		, ,	, ,	
30.				requency ω_1 of the force while
	the energy is maximu.	m for a frequency ω_2	of the force, then.	
	(a) $\omega_1 = \omega_2$			(b) $\omega_1 > \omega_2$
	(c) $\omega_1 < \omega_2$ when dar	mping is small and ω_l	$> \omega_2$ when damping is	large (d) $\omega_1 < \omega_2$
31.	One mole of ideal mo	onoatomic gas ($v = 5/3$) is mixed with one mo	to the of diatomic gas $((\gamma = 7/5)$.
	What is γ for the mixt volume.	ture? γ denotes the rati	o of specific heat at con-	stant pressure, to that at constant
	(a) 3/2	(b) 23/15	(C) 35/23	(d) 4/3
32.	ratio of the radiant en	ergy received on earth	to what it was previou	
33.	(a) 4 Which of the followir	(b) 16 ng statements is correc	(c) 32 t for any thermodynami	(d) 64 ic system?
		y changes in all proce	•	,
		d entropy are state fu		
	(c) The change in ent	ropy can never be zer	О	

	(d) The work done in	an adiabatic process	is always zero	
34.	Two thermally insulate	ed vessels 1 and 2 are	filled with air at temperature	erature (T_1, T_2) , volume (V_1, V_2)
				ssels is opened, the temperature
	inside the vessel at ed			
			TT(PV+PV)	T.T.(P.V. + P.V.)
	(a) $T_1 + T_2$	(b) $(T_1 + T_2)/2$	(c) $\frac{\mathbf{r}_{1}\mathbf{r}_{2}(\mathbf{r}_{1}\mathbf{v}_{1}+\mathbf{r}_{2}\mathbf{v}_{2})}{P.V.T_{2}+P_{2}V_{2}T_{3}}$	(d) $\frac{T_1T_2(P_1V_1 + P_2V_2)}{P_1V_1T_1 + P_2V_2T_2}$
~ ~			1 1 2 2 2 1	1 1 1 2 2 2
35.	A radiation of energy to the surface is:	E falls normally on a	perfectly reflecting sur	face. The momentum transferred
	(a) E/c	(b) 2E/c	(c) Ec	(d) E/c^2
	of two materials havin	g coefficients of therm	al conductivity K and 2	-x
		~	and T_1 $(T_2 > T_1)$. The rate	
			(, , , , , , , , , , , , , , , , , , ,	n 27
	of heat transfer through	h the slab, in a steady	state is $\left(\frac{A(T_2 - T_1)K}{x}\right)$	5,
	with f equals to:			
	(a) 1	(b) 1/2	(c) 2/3	(d) 1/3
37.	A light ray is incident	perpendicular to one	face of a 90° prism and	d is totally
	internally reflected at	the glass-air interface.	If the angle of reflect	ion is 45°,
	we conclude that the	refractive index n:		450
	(a) $n < \frac{1}{\sqrt{2}}$ (b)	$n > \sqrt{2}$ (c) $n > -$	$\frac{1}{\sqrt{2}} \qquad (d) n < \sqrt{2}$	450
20	v –		v <i>–</i>	0
38.	-			0 cm is silvered at the curved
			image of the size of the	At what distance from this lens,
	(a) 20 cm	(b) 30 cm	(c) 60 cm	(d) 80 cm
39.	` '		• •	for reflection from air to glass
37.	(refractive index n), is		ight is totally polarized	for reflection from an to grass
	(a) sin ⁻¹ (n)	(b) $\sin^{-1}(1/n)$	(c) $tan^{-1} (1/n)$	(d) tan ⁻¹ (n)
40.	` '	` ' '	` ' '	ion equal to twice the wavelength
	in Young's double-slit	-		
	(a) infinite	(b) five	(c) three	(d) zero
41.		` '		acuum into a dielectric medium
	with permittivity $\varepsilon = 4$	•		
	(a) wavelength is dou		emains unchanged	
	(b) wavelength is dot			
	(c) wavelength is half	•		
	(d) wavelength and fi			
42.	- · ·	* *	-	equal charges in them repel each
→ ∠.	_			pherical conductor having same
	omer with a force I	when kept apart at st	onic distance. A uniu s	phonoa conductor having same

43. A charged particle q is shot towards another charged particle Q which is fixed, with a speed v. It approaches Q upto a closest distance r and then returns. If q was given a speed 2v, the closest

finally removed away from both. The new force of repulsion between B and C is:

(b) $\frac{3F}{4}$ (c) $\frac{F}{8}$

radius as that of B but uncharged, is brought in contact with B, then brought in contact with C and

(d) $\frac{3F}{8}$

distance of approach v	would be:			
	^q	$\cdots \stackrel{Q}{\longleftarrow} Q$		
(a) r Four charges equal to If the system is in equ	_	_	(d) r/4 and a charge q is at its centre.	
(a) $-\frac{Q}{4}(1+2\sqrt{2})$	(b) $\frac{Q}{4}(1+2\sqrt{2})$	(c) $-\frac{Q}{2}(1+2\sqrt{2})$	(d) $\frac{Q}{2}(1+2\sqrt{2})$	
(a) A.C. cannot pass t(b) A.C changes direc(c) Average value of c(d) D.C. ammeter will	hrough D.C. ammeter tion current for complete cy get damaged		$6\sqrt{\frac{1}{L_{h_{1},5\Omega}}}$	
The total current suppl	•	•	(1) ()	
total resistance is P. If	S = nP, then the mini	imum possible value of		
An electric current is jin parallel. If the lengt currents passing through	(a) 4 (b) 3 (c) 2 (d) 1 An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be:			
resistance X is balance	d against another resist the same end, if one (b) 80 cm	tance Y. If $X < Y$, then	(d) 2 rom one end of the wire when where will be the new position esistance of 4X against Y? (d) 70 cm	
(a) metals with low te (b) metals with high t	emperature coefficient	of resistivity		
- · · ·	terials having low tem	pperature coefficient of litre of water from 10°C (c) 150 s	-	
	•			
	-	-	If the hot junction as $E = a\theta + \theta$ is kept at 0°C, then the neutral	
liberated at the cathode (a) 19.8×10^{-7} kg	uivalent of metal is 3.3 when a 3 A current is (b) 9.9×10^{-7} kg lows along an infinite	is passed for 2 seconds (c) 6.6×10^{-7} kg	The mass of the metal , will be:	
(a) infinite	(b) zero	(c) $\frac{\int_0^{}}{4\pi} \cdot \frac{2i}{r}$ tesla	(d) $\frac{2i}{r}$ tesla	

55. A long wire carries a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

	a distance of 4 cm from the centre is 54 μT . What will be its value at the centre of the loop?
	(a) 250 μT (b) 150 μT (c) 125 μT (d) 75 μT
57.	Two long conductors, separated by a distance d carry currents I_1 and I_2 in the same direction. They exert a force F on each other. Now the current in one of them is increased to two times and its direction is reversed. The distance is also increased to 3d. The new value of the force between them is:
58.	(a) -2F (b) F/3 (c) -2F/3 (d) -F/3 The length of a magnet is large compared to its width and breadth. The time period of its oscillation in a vibration magnetometer is 2s. The magnet is cut along its length into three equal parts and three parts are then placed on each other with their like poles together. The time period of this combination will be:
	(a) 2 s (b) $2/3$ s (c) $2\sqrt{3}$ s (d) $2/\sqrt{3}$ s
59.60.	The materials suitable for making electromagnets should have: (a) high retentivity and high coercivity (b) low retentivity and low coercivity (c) high retentivity and low coercivity (d) low retentivity and high coercivity In an LCR series a.c. circuit, the voltage across each of the components. L, C and R is 50 V. The voltage across the LC combination will be;
	(a) 50 V (b) $50\sqrt{2}$ V (C) 100 V (d) 0 V (zero)
61.	A coil having n turns and resistance $R\Omega$ is connected with a galvanometer of resistance $4R\Omega$. This combination is moved in time t seconds from a magnetic field W_1 weber to W_2 weber. The induced current in the circuit is:
	(a) $\frac{W_2 - W_1}{5Rnt}$ (b) $-\frac{n(W_2 - W_1)}{5Rt}$ (c) $-\frac{(W_2 - W_1)}{Rnt}$ (d) $-\frac{n(W_2 - W_1)}{Rt}$
62.	In a uniform magnetic field of induction B, a wire in the form of semicircle of radius r rotates about the diameter of the circle with angular frequency ω . If the total resistance of the circuit is R, the mean power generated per period of rotation is:
	(a) $\frac{B\pi r^2\omega}{2R}$ (b) $\frac{\left(B\pi r^2\omega\right)^2}{8R}$ (c) $\frac{\left(B\pi r\omega\right)^2}{2R}$ (d) $\frac{\left(B\pi r\omega^2\right)^2}{8R}$
63.	In an LCR circuit, capacitance is changed from C to 2C. For the resonant frequency to remain unchanged, the inductance should be changed from L to: (a) 4L (b) 2L (c) L/2 (d) L/4
64.	A metal conductor of length 1 m rotates vertically about one of its ends at angular velocity 5 radians per second. If the horizontal component of earth's magnetic field is 0.2×10^{-4} T, then the emf developed between the two ends of the conductor is: (a) $5 \mu V$ (b) $50 \mu V$ (c) $5 mV$ (d) $50 mV$
65. 66.	According to Einstein's photoelectric equation, the plot of the kinetic energy of the emitted photoelectrons from a metal Vs the frequency, of the incident radiation gives a straight line whose slope: (a) depends on the nature of the metal used (b) depends on the intensity of the radiation (c) depends both on the intensity of the radiation and the metal used (d) is the same for all metals and independent of the intensity of the radiation The work function of a substance is 4.0 eV. The longest wavelength of light that can cause photoelectron
	emission from this substance is approximately:

(c) 2nB

The magnetic field due to a current carrying circular loop of radius 3 cm at a point on the axis at

(d) 2n²B

of the coil will be:

(b) n^2B

	(a) 540 nm (b) 400 nm (c) 310 nm (d) 220 nm	
67.	67. A charged oil drop is suspended in uniform field of 3×10^4 V/m so that it neither	falls nor rises.
	The charge on the drop will be: (take the mass of the charge = 9.9×10^{-15} kg ar	$nd g = 10 m/s^2)$
	(a) 3.3×10^{-18} C (b) 3.2×10^{-18} C (c) 1.6×10^{-18} C (d) 4.8×10^{-18} C)-18 C
68.		
	of their nuclear sizes will be:	
	(a) $2^{1/3}:1$ (b) $1:3^{1/2}$ (c) $3^{1/2}:1$ (d) $1:2^{1/3}$	
69.	69. The binding energy per nucleon of deuteron $\binom{2}{1}H$ and helium nucleus $\binom{4}{2}He$ is 1.1	MeV and 7 MeV
	respectively. If two deuteron nuclei reacts to form a single helium nucleus, then the	e energy released
	is:	
	(a) 13.9 MeV (b) 26.9 MeV (c) 23.6 MeV (d) 19.2 Me	
70.		leus. The distance
	of the closest approach is of the order of:	
l	(a) 1 Å (b) 10^{-10} cm (c) 10^{-12} cm (d) 10^{-15} cm	
71.		
	(a) electrons move from base to collector (b) holes move from emitter to bas	
	(c) electrons move from collector to base (d) holes move from base to emitte	
72.		$k\Omega$ ($n_{fe} = 50$ and
	$h_{oe} = 25 \mu A/V$), the current gain is:	
	(a) -5.2 (b) -15.7 (c) -24.8 (d) -48.78	
73.	73. A piece of copper and another of germanium are cooled from room temperaturesistance of:	are to 77 K, the
	(a) each of them increases (b) each of them decreases	
	(c) copper decreases and germanium increases (d) copper increases and germani	um decreases
74.	74. The manifestation of band structure in solids is due to;	
	(a) Heisenberg's uncertainty principle (b) Pauli's exclusion principle	
	(c) Bohr's correspondence principle (d) Boltzmann's law	
75.	•	
	(a) the depletion region is reduced and barrier height is increased	
	(b) the depletion region is widened and barrier height is reduced	
	(c) both the depletion region and barrier height are reduced	
7.0	(d) both the depletion region and barrier height are increased	1 % 10
76.		orbital?
	(a) $n = 4$, $1 = 3$, $m = +4$, $s = +1/2$ (b) $n = 4$, $1 = 4$, $m = -4$, $s = -1/2$ (c) $n = 4$, $1 = 3$, $m = +1$, $s = +1/2$ (d) $n = 3$, $1 = 2$, $m = -2$, $s = +1/2$	
77		zimuthal auantum
77.		zimumai quamum
	numbers, $l=1$ and 2 are, respectively: (a) 12 and 4 (b) 12 and 5 (c) 16 and 4 (d) 16 and 5	τ.
78.	**)
76.	78. Which one of the following ions has the highest value of ionic radius? (a) Li ⁺ (b) B ³⁺ (c) O ²⁻ (d) F ⁻	
79.		from infinity to
17.	stationary state 1, would be (Rydberg constant = 1.097×10^7 m ⁻¹):	mom mining to
	(a) 91 nm (B) 192 nm (c) 406 nm (d) 9.1×10^{-10}	l ⁻⁸ nm
80.		11111
	(a) $H_2S < SiH_4 < NH_3 < BF_3$ (b) $NH_3 < H_2S < SiH_4 < BF_3$	
	(a) $H_2S < SiH_4 < YiH_3 < BF_3$ (b) $H_4S < SiH_4 < BF_3$ (c) $H_2S < NH_3 < SiH_4 < BF_3$ (d) $H_2S < NH_3 < SiH_4$	
81.		species?
	(a) K^+ , Ca^{2+} , Sc^{3+} , Cl^- (b) N^+ , Ca^{2+} , Sc^{3+} , F^-	
	(-, -, -, -, -, -, -, -, -, -, -, -, -, -	
•		

	(c) K^+ , Cl^- , Mg^{2+} , Sc^{3+}	(d) Na+, Mg2+, Al3+, Cl	-
	(Atomic numbers F = 9, Cl = 17, Na = 11, Na	Mg = 12, Al = 13, K =	19, $Ca = 20$, $Sc = 21$)
82.	- 23 2 23 2		
	(a) $SO_2 < P_2O_3 < SiO_2 < Al_2O_3$ (c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$	(b) SiO2 < SO2 < Al2O	$P_3 < P_2O_3$
	(c) $Al_2O_3 < SiO_2 < SO_2 < P_2O_3$	(d) Al2O3 < SiO2 < P2O3	$O_3 < SO_2$
83.	The bond order in NO is 2.5 while that in N	IO+ is 3. Which of the	following statements is true for
	these two species?		
	(a) Bond length in NO+ is greater than in NO	(b) Bond length	in NO is greater than in NO+
	(c) Bond length in NO ⁺ is equal to that in N	IO (d) Bond length	n is unpredictable
84.	The formation of the oxide ion O ²⁻ (g) requir	es first an exothermic a	nd then an endothermic step as
	shown below.		
	$O(g) + e^{-} = O(g); \Delta H^{0} = -142 \text{ kJmol}^{-1}$		
	$O(g)^{-} + e^{-} = O^{2-}(g); \Delta H^{0} = 844 \text{ kJmol}^{-1}$		
	This is because:		
	(a) oxygen is more electronegative	(b) oxygen has high e	lectron affinity
	(c) O ion will tend to resist the addition of	another electron	
	(d) O ion has comparatively larger size than	n oxygen atom	
85.	The states of hybridisation of boron and oxy	ygen atoms in boric aci	d (H ₃ BO ₃) are respectively:
	(a) sp^2 and sp^2 (b) sp^2 and sp^3	(c) sp^3 and sp^2	(d) sp ³ and sp ³
86.	Which one of the following has the regular		
	(a) XeF_4 (b) SF_4	*	(d) $[Ni(CN)_4]^{2-}$
0.7	(Atomic numbers $B = 5$, $S = 16$, $Ni = 28$, X		
87.	Of the following outer electronic configuration which one of them?	ns of atoms, the highest	oxidation state is achieved by
	(a) $(n - 1) d^8ns^2$ (b) $(n - 1) d^5ns^1$	(c) $(n - 1) d^3ns^2$	(d) $(n-1) d^5nc^2$
88.	As the temperature is raised from 20°C to 40°C.		
00.	by a factor of which of the following?	c, the average kinetic	energy of ficon atoms changes
		(a) 212/202	(4) 2
0.0	·		
89.	The maximum number of 90° angles betwee	• •	
00	(a) dsp³ hybridisation (b) sp³d hybridisation	• • •	· · · •
90.	Which one of the following aqueous solution	· ·	0 1
91.	(a) 0.01 M Na ₂ SO ₄ (b) 0.01 M KNO ₃ Which among the following factors is the mo		
<i>)</i> 1.	agent?	ost important in making	muorine the strongest oxidising
	(a) Electron affinity	(b) Ionisation enthalpy	
	(c) Hydration enthalpy	(d) Bond dissociation	
92.	In Van der Waals equation of state of the ga		••
	(a) intermolecular repulsions	(b) intermolecular attra	
	(c) volume occupied by the molecules	(d) intermolecular coll	isions per unit volume
93.	The conjugate base of H_2PO_4 is:		
	(a) PO_{4}^{3} (b) $P_{2}O_{5}$	(c) H_3PO_4	
94.	6.02×10^{20} molecules of urea are present in 1	00 mL of its solution. T	The concentration of urea solution
	is:		
	(a) 0.001 M (b) 0.01 M	(c) 0.02 M	(d) 0.1 M
	(Avogadro constant, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$)		
95.	To neutralise completely 20 mL of 0.1 M aq	ueous solution of phospl	horus acid (H ₃ PO ₃), the volume
	of 0.1 M aqueous KOH solution required is		

	(a) 10 mL	(b) 20 mL	(c) 40 mL	(d) 60 mL
96.	For which of the following	lowing parameters the	structural isomers C ₂ I	H ₅ OH and CH ₃ OCH ₃ would be
	expected to have the	same values?		
	(a) Heat of vaporisation	on	(b) Vapour pressure at	t the same temperature
	(c) Boiling points	(d) Gaseous densities	at the same temperatu	re and pressure
97.	Which of the following	ng liquid pairs shows a	positive deviation from	n Raoult's law?
	(a) Water - hydrochlor	ric acid	(b) Benzene - methan	ol
	(c) Water - nitric acid		(d) Acetone - chlorofo	orm
98.	Which one of the foll	owing statements is fa	lse?	
	(a) Raoult's law states	that the vapour pressur	re of a component over	a solution is proportional to its
	mole fraction			
	(b) The osmotic press	ure (π) of a solution	is given by the equation	on $\pi = MRT$, where M is the
	molarity of the solution	on		
	(c) The correct order	of osmotic pressure for	or 0.01 M aqueous solu	tion of each compound is
	$BaCl_2 > KCl > CH_3CO$	OOH > sucrose		
	(d) Two sucrose solution	ons of same molality pr	repared in different solve	ents will have the same freezing
	point depression			
99.	What type of crystal of	defect is indicated in t	he diagram below?	
	Na+, Cl-, Na+, Cl-, Na+	, Cl-		
	Cl ⁻ • Cl ⁻ Na ⁺ • N	a^+		
	Na ⁺ Cl ⁻ • Cl ⁻ , Na ⁺ (CI-		
	Cl- Na+ Cl- Na+ • Na	\mathbf{n}^+		
	(a) Frenkel defect	(b) Schottky defect	(c) Interstitial defect	(d) Frenkel and Schottky defects
100.	An ideal gas expands	in volume from 1×1	10^{-3} m ³ to $1 > 10^{-2}$ m ³ at	300K against a constant
	pressure of 1×10^5 N	m ⁻² . The work done is	:	
	(a) -900 J	(b) -900 kJ	(c) 270 kJ	(d) 900 kJ
101.	In a hydrogen-oxygen	fuel cell, combustion	of hydrogen occurs to	:
	(a) generate heat	(b) crea	te potential difference b	between the two electrodes
	(c) produce high purit	y water (d) remo	ve absorbed oxygen fro	om electrode surfaces
102.	In a first order reaction	on, the concentration of	of the reactant, decrease	es from 0.8 M to 0.4 M in 15
	minutes. The time take	en for the concentration	n to change from 0.1 M	M to 0.025 M is:
	(a) 30 min	(b) 15 min	(c) 7.5 min	(d) 60 min
103.	What is the equilibriu	m expression for the i	reaction	
		$P_4(s) + 5O_2(g) \rightleftharpoons$	$P_4O_{10}(s)$?	
	(D.O. 1	[D O]		1
	(a) $K_c = \frac{[P_4 O_{10}]}{[P_4 O_{10}]}$	(b) $K_c = \frac{[P_4 O_{10}]}{[P_4 O_{10}]}$	(c) $K_c = [O_2]^5$	(d) $K_c = \frac{1}{10000000000000000000000000000000000$
	$[P_4][O_2]^3$	$5[P_4][O_2]$		$[O_2]^3$
104.	For the reaction,			
	$CO(g) + Cl_2(g) \rightleftharpoons$	$COCl_2(g)$, the K_p/K_c is	equal to:	
		1		(4) 1 0
	(a) 1/RT	(b) RT	(c) $/_{RT}$	(d) 1.0
105.	The equilibrium consta			
		$N_2(g) + O_2(g) \rightleftharpoons G$	2NO(g)	
	at temperature T is 4	\sim 10 ⁻⁴ . The value of _c	for the reaction:	
	K			
	-	$\Rightarrow \frac{1}{1}$		
	NO(g)	$2^{N_2(g)} + 2^{O_2(g)}$	at the same temperature	18:
	(a) 2.5×10^2	(b) 50	(c) 4×10^{-4}	(d) 0.02
1,	() ~ 10	(3) 50	(-) . ~ 10	(-)
l ´				

106. The rate equation for the reaction $2A + B \longrightarrow C$ is found to be : rate = k = [A][B].	
(a) unit of k must be s^{-1} (b) $t_{1/2}$ is a constant	
(c) rate of formation of C is twice the rate of disappearance of A	
(d) value of k is independent of the initial concentrations of A and B	
107. Consider the following E ⁰ values:	
$E^{o}_{Fe^{3+/Fe^{2+}}} = +0.77 \text{ V}$	
$E^{0}_{\text{Sn}^{2+}/\text{Sn}} = -0.14 \text{V}$	
Under standard conditions the potential for the reaction	
$Sn(s) + 2Fe^{3+} (aq) \rightarrow 2Fe^{2+} (aq) + Sn^{2+} (aq) is:$	
(a) 1.68 V (b) 1.40 V (c) 0.91 V (d) 0.63 V	
108. The molar solubility (in mol L-1) of a sparingly soluble salt MX ₄ is 's'. The corresponding	solubility
product is K_{sp} . s is given in terms of K_{sp} by the relation:	Ĭ
(a) $s = (K_{sp}/128)^{1/4}$ (b) $s = (128 K_{sp})^{1/4}$ (c) $s = (256 K_{sp})^{1/5}$ (d) $s = (K_{sp}/256)^{1/5}$	
109. The standard e.m.f of a cell, involving one electron change is found to be 0.591 V at 2	5°C. The
equilibrium constant of the reaction is (F = 96,500 C mol ⁻¹ , R = 8.314 JK ⁻¹ mol ⁻¹):	
(a) 1.0×10^1 (b) 1.0×10^5 (c) 1.0×10^{10} (d) 1.0×10^{30}	
110. The enthalpies of combustion of carbon and carbon monoxide are -393.5 and -283 kJ mol ⁻¹ res	pectively.
The enthalpy of formation of carbon monoxide per mole is:	
(a) 110.5 kJ (b) 676.5 kJ (c) -676.5 kJ (d) -110.5 kJ	
111. The limiting molar conductivities \wedge^0 for NaCl, KBr and KCl are 126, 152 and 150 S	cm² mol-1
respectively. The \wedge^0 for NaBr is:	
(a) 128 S cm ² mol ⁻¹ (b) 176 S cm ² mol ⁻¹ (c) 278 S cm ² mol ⁻¹ (d) 302 S cm ² mol ⁻¹	
112. In a cell that utilizes the reaction	
$Zn(s) + 2H^+$ (aq) $\rightarrow Zn^{2+}$ (aq) + $H_2(g)$ addition of H_2SO_4 to cathode compartment, will:	
(a) lower the E and shift equilibrium to the left (b) lower the E and shift the equilibrium to	the right
(c) increase the E and shift the equilibrium to the right	
(d) increase the E and shift the equilibrium to the left	
113. Which one of the following statements regarding helium is incorrect?	
(a) It is used to fill gas balloons instead of hydrogen because it is lighter and non-inflan	nmable
(b) It is used as a cryogenic agent for carrying out experiments at low temperatures	
(c) It is used to produce and sustain powerful superconducting magnets	
(d) It is used in gas-cooled nuclear reactors	
114. Identify the correct statement regarding enzymes: (a) Enzymes are specific biological catalysts that can normally function at very high tem	poretures
(T - 1000K).	peratures
(b) Enzymes are normally heterogeneous catalysts that are very specific in their action	
(c) Enzymes are specific biological catalysts that cannot be poisoned	
(d) Enzymes are specific biological catalysts that possess well defined active sites.	
115. One mole of magnesium nitride on the reaction with an excess of water gives:	
(a) one mole of ammonia (b) one mole of nitric acid	
(c) two moles of ammonia (d) two moles of nitric acid	
116. Which one of the following ores is best concentrated by froth-floatation method?	
(a) Magnetite (b) Cassiterite (c) Galena (d) Malachite	
117. Beryllium and aluminium exhibit many properties which are similar. But, the two elements	differ in:
(a) exhibiting maximum covalency in compounds (b) forming polymeric hydrides	
(c) forming covalent halides (d) exhibiting amphoteric nature in the	
118. Aluminium chloride exists as dimer, Al ₂ Cl ₆ in solid state as well as in solution of non-polar	solvents
such as benzene. When dissolved in water, it gives:	

$\overline{}$	
	(a) $Al^{3+} + 3Cl^{-}$ (b) $[Al(H_2O)_6]^{3+} + 3Cl^{-}$ (c) $[Al(OH)_6]^{3-} + 3HCl$ (d) $Al_2O_3 + 6HCl$
119.	The soldiers of Napoleon army while at Alps during freezing winter suffered a serious problem as
	regards to the tin buttons of their uniforms. White metallic tin buttons got converted to grey powder.
	This transformation is related to:
	(a) a change in the crystalline structure of tin
	(b) an interaction with nitrogen of the air at very low temperatures
	(c) a change in the partial pressure of oxygen in the air
	(d) an interaction with water vapour contained in the humid air
120.	The $E^0_{M^{3+}/M^{2+}}$ values of Cr, Mn, Fe and Co are -0.41, + 1.57, +0.77 and +1.97 V respectively. For
	which one of these metals the change in oxidation state from +2 to +3 is easiest?
	(a) Cr (b) Mn (c) Fe (d) Co
121.	Excess of KI reacts with CuSO ₄ solution and then Na ₂ S ₂ O ₃ solution is added to it. Which of the
	statements is incorrect for this reaction?
	(a) Cu_2I_2 is formed (b) CuI_2 is formed (c) $Na_2S_2O_3$ is oxidised (d) Evolved I_2 is reduced
122.	Among the properties (A) reducing (B) oxidising (C) complexing, the set of properties shown by CN-
	ion towards metal species is:
	(a) A, B (b) B, C (c) C, A (d) A, B, C
123.	The co-ordination number of a central metal atom in a complex is determined by:
	(a) the number of ligands around a metal ion bonded by sigma bonds
	(b) the number of ligands around a metal ion bonded by pi-bonds
	(c) the number of ligands around a metal ion bonded by sigma and pi-bonds both
	(d) the number of only anionic ligands bonded to the metal ion
124.	Which one of the following complexes is an outer orbital complex?
	(a) $[Fe(CN)_6]^{4-}$ (b) $[Mn(CN)_6]^{4-}$ (c) $[Co(NH_3)_6]^{3+}$ (d) $[Ni(NH_3)_6]^{2+}$
125.	Co-ordination compounds have great importance in biological systems. In this context which of the
	following statements is incorrect?
	(a) Chlorophylls are green pigments in plants and contain calcium
	(b) Haemoglobin is the red pigments of blood and contains iron
	(c) Cyanocobalamin is vitamin B ₁₂ and contains cobalt
	(d) Carboxypeptidase-A is an enzyme and contains zinc
126.	Cerium ($Z=58$) is an important member of the lanthanides. Which of the following statements about
	cerium is incorrect?
	(a) The common oxidation states of cerium are +3 and +4
	(b) The +3 oxidation state of cerium is more stable than the +4 oxidation state
	(c) The +4 oxidation state of cerium is not known in solutions
	(d) Cerium (IV) acts as an oxidising agent
127.	Which one of the following has largest number of isomers?
	(a) $[Ru(NH_3)_4 Cl_2]^+$ (b) $[Co(NH_3)_5 Cl]^{2+}$ (c) $[Ir(PR_3)_2 H (CO)]^{2+}$ (d) $[Co(en)_2 Cl_2]^+$
	(R = alkyl group, en = ethylenediamine)
128.	The correct order of magnetic moments (spin only values in (B.M.) among the following is:
	(a) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > Fe(CN)_6]^{4-}$ (b) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$ (c) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ (d) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
	(c) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$ (d) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$
	(Atomic numbers $Mn = 25$, $Fe = 26$, $Co = 27$)
1.20	
[129.	Consider the following nuclear reactions:
92	$^{238}M \rightarrow_y^x N + 2 {}_{2}^4He ; {}_y^x N \rightarrow_B^A L + 2\beta^+$
	The number of neutrons in the element L is:
	(a) 142 (b) 144 (c) 140 (d) 146

(122)			
130.	. The half-life of a radioisotope is four hours. It	f the initial mass of th	e isotope was 200 g, the mass
	remaining after 24 hours undecayed is:	(a) 2 125 a	(1) 4.167
121		(c) 3.125 g	_
131.	. The compound formed in the positive test for	r nitrogen with the La	ssaigne solution of an organic
	compound is;	(a) Ea(CN)	(4) No IE-(CN) NOCI
1.00	(a) $Fe_4[Fe(CN)_6]_3$ (b) $Na_3[Fe(CN)_6]$	2	, ,
132.	. The ammonia evolved from the treatment of (^
	nitrogen was passed in 100 mL of 0.1 M sulp		-
	M sodium hydroxide solution for complete no		^
1.00	* *	(c) urea	(d) thiourea
133.	. Which one of the following has the minimum	~ ~	
	•	(c) 1-butene	(D) Isobutene
134.	. The IUPAC name of the compound is		
	нс		
	(a) 3, 3 - dimethyl - 1- hydroxy cyclohexane	· · · · · · · · · · · · · · · · · · ·	
		(d) 1,1- dimethyl -3 -	cyclohexanol
135.	. Which one of the following does not have sp	p ² hybridised carbon?	
	(a) Acetone (b) Acetic acid	(c) Acetonitrile	(d) Acetamide
136.	. Which of the following will have a meso-ison	mer also?	
	(a) 2- chlorobutane	(b) 2,3 - dichlorobuta	
	(c) 2,3 - dichloropentane	(d) 2 - hydroxypropai	noic acid
137.	. Rate of the reaction		
	1 0		
	$R - C \downarrow_{Z}^{0} + Nu^{-} \longrightarrow R - C \downarrow_{N}^{0} + Z^{-}$ is fas	stest when Z is:	
	Z N u		
	(a) Cl (b) NH,	(c) OC ₂ H ₂	(d) OCOCH ₂
138.	. Amongst the following compounds, the optica	2 3	
	(a) $CH_3 - CH_2 - CH_2 - CH_3$ (b) $CH_3 - CH_2 - CH_3$	CH ₃	
	(a) $CH_3 - CH_2 - CH_2 - CH_3$ (b) $CH_3 - CH_2 - CH_3$	СН - СН 3 (С) СН 3 - С	\langle (d) CH ₃ - CH ₂ - C \equiv CH
		C 2	H 5
139.	. Consider the acidity of the carboxylic acids:		
	_ · · ·	(iii) p-NO ₂ C ₆ H ₄ COOH	(iv) m-NO ₂ C ₆ H ₄ COOH
	Which of the following order is correct?	, ,	, n
1.40		(c) $ii > iv > i > iii$	(d) $11 > 111 > 1V > 1$
140.	. Which of the following is the strongest base?		
	(a) \mathbb{Z} $\mathbb{N} \mathbb{H} \mathbb{C} \mathbb{H} \mathbb{B} \mathbb{C} \mathbb{H} \mathbb{C} H$	(c) NH .	(d) CH 2 - N H 2
	(a) (b) (b)		(u) \/ • " · " · " ·
			
		C H 3	
141.	. Which base is present in RNA but not in DN.	*C H 3	
	. Which base is present in RNA but not in DN. (a) Uracil (b) Cytosine	A? (c) Guanine	(d) Thymine
	. Which base is present in RNA but not in DN. (a) Uracil (b) Cytosine (c) The compound formed on heating chlorobenzene	A? (c) Guanine	(d) Thymine
	. Which base is present in RNA but not in DN. (a) Uracil (b) Cytosine	A? (c) Guanine	(d) Thymine esence of concentrated sulphuric
	. Which base is present in RNA but not in DN. (a) Uracil (b) Cytosine . The compound formed on heating chlorobenzene acid is:	A? (c) Guanine	(d) Thymine

143.	On mixing ethyl acetate with aqueous sodium	chloride, the composition of the resultant solution is:
	(a) CH ₃ COOC ₂ H ₅ + NaCl (c) CH ₃ COCl + C ₂ H ₅ OH + NaOH	(d) CH ₂ Cl + C ₂ H ₅ COONa
144.		I followed by treatment with a saturated solution of
	NH ₂ Cl gives:	•
	4 -	(c) 2-methyl-2-propanol (d) acetyl iodide
145.		zinc and hydrochloric acid to give the corresponding
	hydrocarbon?	, , ,
	(a) Ethyl acetate (b) Acetic acid	(c) Acetamide (d) Butan-2-one
146.		ion with 50% sodium hydroxide solution to give the
	corresponding alcohol and acid?	·
	(a) Phenol (b) Benzaldehyde	(c) Butanal (d) Benzoic acid
147.	Among the following compounds which can	
		O H (b) CH 3CH 2CH CH 3
	(a) $CH_3CH_2CH_2CH_2CH_2OH$	(b) CH ₃ CH ₂ CH ₂ ĊHCH ₃
	ÇH ₃	
	(c) CH ₃ CH ₂ CCH ₂ CH ₃	(d) CH 3CH 2CH CH 2CH 2OH
	CH 3 CH 3CH 2CCH 2CH 3 O H	CH ₃
148.	Which of the following compounds is not cl	
	(a) 1-chloropentane	(b) 2-chloropentane
	(c) 1-chloro-2-methyl pentane	• •
149.	-	body are responsible for the level of diabetes. This
	compound belongs to which of the following	-
	(a) A co-enzyme (b) A hormone	•
150.	The smog is essentially caused by the present	
	(a) O_2 and O_3 (b) O_2 and N_2	(c) oxides of sulphur and nitrogen (d) O_3 and N_2

AIEEE 2004 Physics & Chemistry Answer Key

1.	c	51.	c	101.	b
2.	a	52.	d	102.	a
3.	c	53.	a	103.	d
4.	a	54.	b	104.	a
5.	c	55.	b	105.	b
6.	b	56.	a	106.	d
7.	d	57.	c	107.	c
8.	d	58.	b	108.	b
9.	a	59.	c	109.	c
10.	b	60.	d	110.	d
11.	a	61.	b	111.	a
12.	b	62.	b	112.	c
13.	b	63.	c	113.	c
14.	c	64.	b	113.	d
15.	b	65.	d	114.	
16.		66.			c
	a		c	116.	c
17.	C	67.	a	117.	a 1.
18.	d	68.	d	118.	b
19.	a 1.	69.	c	119.	a
20.	b	70.	C	120.	a
21.	a	71.	d	121.	b
22.	d	72.	d	122.	c
23	b	73.	c	123	a
24.	c	74.	b	124.	d
25.	c	75.	c	125.	a
26.	b	76.	c	126.	c
27.	c	77.	b	127.	d
28.	b	78.	c	128.	a
29.	b	79.	a	129.	b
30.	a	80.	c	130.	c
31.	a	81.	a	131.	a
32.	d	82.	d	132.	c
33.	b	83.	b	133.	d
34.	c	84.	c	134.	c
35.	b	85.	b	135.	c
36	d	86	c	136	b
37.	b	87.	d	137.	a
38.	a	88.	c	138.	c
39.	d	99.	d	139.	d
40.	b	90.	a	140.	d
41.	c	91.	c	141.	a
42.	d	92.	c	142.	b
43.	d	93.	d	143.	a
44.	b	94.	b	144.	c
45.	c	95.	c	145.	d
46.	c	96.	d	146.	b
47.	a	97.	b	147.	c
48.	b	98.	d	148.	a
49.	a	99.	b	149.	b
50.	c	100.	a	150.	c
50.	-	-00.		150.	C

AIEEE 2004 Question Paper

MATHEMATICS(PART - II)

1.	Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The real R is:	lation
	(a) a function (b) transitive (c) not symmetric (d) reflexive	
2.	The range of the function $f(x) = {}^{7-x}P_{x-3}$ is: (a) $\{1, 2, 3\}$ (b) $\{1, 2, 3, 4, 5, 6\}$ (c) $\{1, 2, 3, 4\}$ (d) $\{1, 2, 3, 4, 5\}$	
3.	Let z, w be complex numbers such that $z+iw=0$ and arg $zw=\pi$. Then arg z equals:	
٥.	(a) $\pi/4$ (b) $\pi/2$ (c) $3\pi/4$ (d) $5\pi/4$	
4.	If $z = x - iy$ and $z^3 = p + iq$, then $\left(\frac{x}{p} + \frac{y}{q}\right) / (p^2 + q^2)$ is equal to:	
_	(a) 1 (b) -1 (c) 2 (d) -2	
5.	If $ z^2 - 1 = z ^2 + 1$, then z lies on: (a) the real axis (b) the imaginary axis (c) a circle (d) an ellipse	
	(a) the real axis (b) the imaginary axis (c) a energy (a) an empse	
	$\begin{pmatrix} 0 & 0 & -1 \\ & & & \end{pmatrix}$	
6.	Let $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. The only correct statement about the matrix A is:	
	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$	
	(a) A is a zero matrix (b) $A = (-1)I$, where I is a unit matrix	
	(c) A^{-1} does not exist (d) $A^2 = I$	
	$\begin{pmatrix} 1 & -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 4 & 2 & 2 \end{pmatrix}$	
7.	Let $A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$ and $(10) B = \begin{pmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{pmatrix}$. If B is inverse of matrix A, then α is:	
	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & -2 & 3 \end{pmatrix}$	
	(a) -2 (b) 1 (c) 2 (d) 5	
8.	If a_1 , a_2 , a_3 ,, a_n , are in G.P., then the value of the determinant	
	$ \log a_n - \log a_{n+1} - \log a_{n+2} $	
	$\log a_{n+3} \log a_{n+4} \log a_{n+5}$, is:	
	$ \begin{vmatrix} \log a_n & \log a_{n+1} & \log a_{n+2} \\ \log a_{n+3} & \log a_{n+4} & \log a_{n+5} \\ \log a_{n+6} & \log a_{n+7} & \log a_{n+8} \end{vmatrix}, \text{ is :} $	
	(a) 0 (b) 1 (c) 2 (d) -2	
9.	Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the	roots
	of the quadratic equation:	
10	(a) $x^2 + 18x + 16 = 0$ (b) $x^2 - 18x + 16 = 0$ (c) $x^2 + 18x - 16 = 0$ (d) $x^2 - 18x - 16 = 0$ If $(1 - p)$ is a root of quadratic equation $x^2 + px + (1 - p) = 0$ then its roots are:	
10.	(a) 0, 1 (b) -1, 1 (c) 0, -1 (d) -1, 2	
11.	Let $S(K) = 1 + 3 + 5 + \dots + (2K - 1) = 3 + K^2$. Then which of the following is true?	
	(a) S(1) is correct (b) S(K) \Rightarrow S(K + 1) (c) S(K) \neq S(K + 1)	
12.	(d) Principle of mathematical induction can be used to prove the formula How many ways are there to arrange the letters in the word GARDEN with the vowels in alphab	etical
12.	order?	. Sticul
	(a) 120 (b) 240 (c) 360 (d) 480	

13.		of distributing 8 identi	ical balls in 3 distinct b	oxes so that none of the boxes
	is empty is:	(1.) 01	() 28	(1) 8C
11	(a) 5	(b) 21	(c) 3^8	(d) ⁸ C ₃
14.			is 4, while the equation is	$x^2 + px + q = 0$ has equal roots,
	then the value of 'q' i	.S.		
	(a) $\frac{49}{4}$	(b) 12	(c) 3	(d) 4
	(a) 4	(0) 12	(c) 3	(d) 4
15.	The coefficient of the	middle term in the b	inomial expansion in po	owers of x of $(1+\alpha x)^4$ and of
	$(1-\alpha x)^6$ is the same	if α equals:		
	(-) 5	10	() 3	(1) 3
	(a) $-\frac{5}{3}$	(b) $\frac{10}{3}$	(c) $-\frac{3}{10}$	(d) $\frac{3}{5}$
16.	The coefficient of x ⁿ	in expansion of $(1 + x)$	$(x)(1 - x)^n$ is:	
	(a) (n - 1)		(c) $(-1)^{n-1}(n-1)^2$	(d) $(-1)^{n-1}$ n
17.	If $s_n = \sum_{r=0}^{\infty} \frac{1}{{}^nC_r}$ and t	$_{n} = \sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}}, \text{ then } \frac{t_{n}}{s_{n}}$	is equal to:	
	(a) $\frac{1}{2}$ n	(b) $\frac{1}{2}$ n - 1	(c) n - 1	(d) $\frac{2n-1}{2}$
	2	2		2
18.	Let T _r be the rth term of	of an A.P. whose first to	erm is a and common dif	ference is d. If for some positive
	into como m	m 1 and m 1	than a diagnala.	
	integers m, n, $m \neq n$,	$T_{\rm m} = -$ and $T_{\rm n} = -$,	then a - d equals:	
	(a) 0	(b) 1	(c) $\frac{1}{mn}$	(d) $\frac{1}{m} + \frac{1}{n}$
	· /		mn	`´ m n
				$n(n+1)^2$
19.	The sum of the first n	terms of the series 1 ² +	$-2. 2^2 + 3^2 + 2. 4^2 + 5^2$	+ 2. 6^2 + is $\frac{n(n+1)^2}{2}$ when
	n is even. When n is			
				2
	3n(n+1)	(b) $\frac{n^2(n+1)}{n^2}$	(c) $\frac{n(n+1)^2}{4}$	(d) $\left[\frac{n(n+1)}{n(n+1)}\right]^2$
	2	2	4	$\begin{pmatrix} \mathbf{u} \end{pmatrix} \begin{bmatrix} 2 \end{bmatrix}$
	1	1 1		
20.	The sum of series $\frac{1}{2!}$	$+\frac{1}{4}+\frac{1}{6}+\dots$ is:		
	2!	4! 6!		
	$(e^2 - 1)$	$(e-1)^2$	$(e^2 - 1)$	$(e^2 - 2)$
	(a) $\frac{\langle \cdot \rangle}{2}$	(b) $\frac{2e}{}$	(c) $\frac{(e^2-1)}{2e}$	(d) <u>e</u>
	2	20	20	Č
21	Let \(\alpha \) B be such that	$\pi < \alpha - \beta < 3\pi$ If since	$\alpha + \sin \beta = -\frac{21}{2}$ and $\cos \beta$	$\alpha + \cos \beta = -\frac{27}{65}$, then the value
21.	Let w, p be such that	ν (ω β (3ν. 11 bin)	65	65, then the value
	$\alpha - \beta$			
	of $\cos \frac{\alpha - \beta}{2}$ is:			
	<i>2</i>			
	(3)	(b) $\frac{3}{\sqrt{130}}$	(c) $\frac{6}{65}$	(d) 6
	(a) $-\frac{3}{\sqrt{130}}$	$\sqrt{130}$	65	(d) $-\frac{6}{65}$

_				
22.	If $u = \sqrt{a^2 \cos^2 \theta + b^2}$ minimum values of u^2		$\frac{1}{\cos^2 \theta}$ then the different	nce between the maximum and
			(c) $(a + b)^2$	(d) $(a - b)^2$
23.				the $0 < \alpha < \frac{\pi}{2}$. Then the greatest
	angle of the triangle i (a) 60°	s: (b) 90°	(c) 120°	(d) 150°
24.	on the opposite bank of elevation becomes	of the river is 60° and 30° . The breadth of the	when he retires 40 meter	f elevation of the top of a tree ers away from the tree the angle
2.5	(a) 20 m	(b) 30 m	(c) 40 m	(d) 60 m
25.			$\cos x + 1$, is onto, then the	
26.		tion $y = f(x)$ is symmetric	(c) $[0, 1]$ etrical about the line x - x) (c) $f(x) = f(-x)$	
27.	The domain of the fun	nction $f(x) = \frac{\sin^{-1}(x - \sqrt{9 - x^2})}{\sqrt{9 - x^2}}$	3) is:	
	(a) [2, 3]	(b) [2, 3)	(c) [1, 2]	(d) [1, 2)
28.	If $\lim_{x \to \infty} \left(1 + \frac{a}{x} + \frac{b}{x^2} \right)^{2x}$	$=e^2$, then the values of	of a and b, are:	
	(a) $a \in R$, $b \in R$	(b) $a = 1, b \in R$	(c) $a \in R, b = 2$	(d) $a = 1$, $b = 2$
29.	Let $f(x) = \frac{1 - \tan x}{4x - \pi}$, x	$\neq \frac{\pi}{4}, x \in \left[0, \frac{\pi}{2}\right].$ If for	x) is continuous in $\begin{bmatrix} 0, \end{bmatrix}$	$\left[\frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is:
(a) 1		(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	(d) -1
30.	If $x = e^{y + e^{y + \dots + to \infty}}$, $x > 0$,	then $\frac{dy}{dx}$ is:		
	(a) $\frac{x}{1+x}$	(b) $\frac{1}{x}$	(c) $\frac{1-x}{x}$	$ (d) \frac{1+x}{x} $
31.	A point on the parabo	ola $y^2 = 18x$ at which	the ordinate increases at	t twice the rate of the abscissa
(a) ₈ (2,	4)	(b) (2, -4)	(c) $\left(\frac{-9}{2}, \frac{9}{2}\right)$	(d) $\left(\frac{9}{8}, \frac{9}{2}\right)$
32.			tative $f'' = 6(x - 1)$. If its raph is $y = 3x - 5$, therefore, $(c) (x + 1)^3$	graph passes through the point in the function is: (d) $(x + 1)^2$
33.	The normal to the cur (a) (a, 0)	ve $x = a(1 + \cos \theta)$, y (b) (0, a)	= $a\sin\theta$ at ' θ ' always (c) $(0, 0)$	passes through the fixed point: (d) (a, a)
l				

34.	If $2a + 3b + 6c = 0$, (a) $(0, 1)$	then at least one root (b) (1, 2)	of the equation $ax^2 + bx$ (c) (2, 3)	x + c = 0 lies in the interval: (d) $(1, 3)$
35.	$\lim_{n\to\infty}\sum_{r=1}^n \frac{1}{n}e^{r/n} \text{ is:}$			
	(a) e	(b) e - 1	(c) 1 - e	(d) $e + 1$
36.	If $\int_{\sin(x-\alpha)}^{\sin x} dx = Ax$	$x + B \log \sin(x - \alpha) + C$	then value of (A, B) i	s:
	(a) $(\sin \alpha, \cos \alpha)$	(b) $(\cos \alpha, \sin \alpha)$	(c) $(-\sin\alpha, \cos\alpha)$	(d) $(-\cos\alpha, \sin\alpha)$
37.	$\int_{\cos x - \sin x}^{dx} $ is equal to	70:		
2	(a) $\int_{0}^{1} \log \tan \left(\frac{x}{2} - \frac{\pi}{8} \right) +$	c (b) $\frac{1}{2} \log \cot \left(\frac{x}{2} \right) + c$	(c) $\frac{1}{2} \log \tan \left(\frac{x}{2} - \frac{3\pi}{8} \right)$	+c (d) $\frac{1}{2} \log \tan \left(\frac{x}{2} + \frac{3\pi}{8} \right) + c$
38.	The value of $\int_{-2}^{3} 1-x $	$^{2} \mid dx$ is:		
(a)	28 3	(b) 14 3	(c) $\frac{7}{3}$	(d) $\frac{1}{3}$
39.	The value of $I = \int_0^{\pi/2}$	$\frac{(\sin x + \cos x)^2}{1 + \sin 2x} dx is:$		
	(a) 0	(b) 1	(c) 2	(d) 3
40.	If $\int_0^{\pi} x f(\sin x) dx = A \int_0^{\pi/2}$	$\int_{0}^{2} f(\sin x) dx$, then A is	equal to:	
	(a) 0	(b) π	(c) $\frac{\pi}{4}$	(d) 2π
41.	If $f(x) = \frac{e^x}{1+e^x}$, $I_1 = \int_{f(-a)}^{f(a)}$	$\sup_{x} xg\{x(1-x)\} dx \text{ and } I_2 =$	$\int\limits_{f(-a)}^{f(a)} g\{x(1-x)\}dx \ , \ then \ the$	e value of l_2 is:
	(a) 2	(b) -3		(d) 1
42.	The area of the region (a) 1	bounded by the curve (b) 2	es $y = x - 2 , x = 1, x$ (c) 3	= 3 and the x-axis is: (d) 4
43.			` '	where a is an arbitrary constant
44.			(c) $(x^2 - y^2)y' = 2xy + (x + x^2y) dy = 0$ is:	
	$(a) - \frac{1}{xy} = c$	$(b) -\frac{1}{xy} + \log y = c$	$(c) \frac{1}{xy} + \log y = c$	(d) $\log y = cx$
45.	the line $2x + 3y = 1$,	then the locus of the	vertex C is the line:	ntroid of this triangle moves on
4 -			(c) $3x + 2y = 5$	
46.	The equation of the st ordinate axes whose s		ough the point (4, 3) an	d making intercepts on the co-

(a) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$ (b) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$

,

	(c) $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$	(d) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1}$, -=1
47.	If the sum of the slopes of the lines given b	$y x^2 - 2cxy - 7y^2 = 0$	is four times their product, then
	c has the value:		
	(a) 1 (b) -1		(d) -2
48.	If one of the lines given by $6x^2 - xy + 4cy^2$		
100	(a) 1 (b) -1	(d) 3	(d) -3
49.	If a circle passes through the point (a, b) and	cuts the circle $x^2 + y^2$	= 4 orthogonally, then the locus
	of its centre is:	(h) 2a 2h (a² -	L2 + 4) 0
	(a) $2ax + 2by + (a^2 + b^2 + 4) = 0$	(b) $2ax + 2by - (a^2 + a^2)$	$b^2 + 4 = 0$
50	(c) $2ax - 2by + (a^2 + b^2 + 4) = 0$		
]50.	A variable circle passes through the fixed poend of the diameter through A is:	omit A(p, q) and touches	s x-axis. The locus of the other
	(a) $(x - p)^2 = 4qy$ (b) $(x - q)^2 = 4py$	(c) $(y - p)^2 = Aay$	$(d) (y - a)^2 = Any$
51.			
31.	then the equation of the circle is:	- o he along diameters of	of a cheic of chedimerence 10% ,
		(b) $x^2 + y^2 - 2x - 2y$	- 23 - 0
	(a) $x + y - 2x + 2y - 23 = 0$ (c) $x^2 + y^2 + 2x + 2y - 23 = 0$		
52.	The intercept on the line $y = x$ by the circle		
	as a diameter is:	•	•
	(a) $x^2 + y^2 - x - y = 0$ (b) $x^2 + y^2 - x + y =$	$= 0$ (c) $x^2 + y^2 + x + y$	$y = 0$ (d) $x^2 + y^2 + x - y = 0$
53.	If $a \neq 0$ and the line $2bx + 3cy + 4d = 0$ pa	asses through the points	of intersection of the parabolas
	$y^2 = 4ax$ and $x^2 = 4ay$, then:		
	(a) $d^2 + (2b + 3c)^2 = 0$ (b) $d^2 + (3b + 2c)^2$	$= 0$ (c) $d^2 + (2b - 3c)^2$	$a^2 = 0$ (d) $d^2 + (3b - 2c)^2 = 0$
54.	The eccentricity of an ellipse, with its centre	at the origin, is $\frac{1}{2}$. If	one of the directrices is $x = 4$,
		2	
	then the equation of the ellipse is: (a) $3x^2 + 4y^2 = 1$ (b) $3x^2 + 4y^2 = 12$	(a) $4x^2 + 2x^2 - 12$	(d) $4v^2 + 2v^2 = 1$
5.5			
33.	A line makes the same angle θ , with each o		e angle p, which it makes with
	y-axis, is such that $\sin^2 \beta = 3\sin^2 \theta$, then co	$s^2\theta$ equals:	
	(a) $\frac{2}{3}$ (b) $\frac{1}{5}$	(c) $\frac{3}{5}$	(d) $\frac{2}{5}$
	(a) $\frac{1}{3}$ (b) $\frac{1}{5}$	(c) $\frac{-}{5}$	(d) $\frac{1}{5}$
56.	Distance between two parallel planes 2x + y	+ 2z = 8 and $4x + 2y$	+ 4z + 5 = 0 is:
	3 5	7	9
	(a) $\frac{3}{2}$ (b) $\frac{5}{2}$	(c) $\frac{7}{2}$	(d) $\frac{9}{2}$
57.	A line with direction cosines proportional to	2, 1, 2 meets each of	the line $x = y + a = z$ and
	x + a = 2y = 2z. The co-ordinates of each	of the points of intersec	ction are given by:
	(a) (3a, 3a, 3a,), (a, a, a)	(b) (3a, 2a, 3a), (a, a,	
	(c) (3a, 2a, 3a,), (a, a, 2a)	(d) (2a, 3a, 3a), (2a,	a, a)
58.	If the straight lines $x = 1 + s$, $y = -3 - \lambda s$, z	$= 1 + \lambda s$ and $x = \frac{t}{\lambda}$, $y = \frac{t}{\lambda}$	= 1 + t, $z = 2 - t$, with parameter
		2	, ,
	s and t respectively, are co-planar, then λ	equals:	
	(a) -2 (b) -1	(c) $-\frac{1}{2}$	(d) 0
59.	The intersection of the spheres $x^2 + y^2 + z^2$	- + 7x - 9v - 7 - 12 and	$\mathbf{v}^2 + \mathbf{v}^2 + \mathbf{z}^2 - 3\mathbf{v} + 3\mathbf{v} + 4\mathbf{z} -$
]	8 is the same as the intersection of one of		
		(c) $x - y - 2z = 1$	
└	(0) A - 2y - L - 1	(*) A y 2L - 1	(ω) $\Delta \alpha$ J $L=1$

60.	Let a, b and c be thre	e non-zero vectors sucl	h that no two of these	are collinear. If the vector $\overset{\mathbf{r}}{a} + \overset{\mathbf{r}}{2b}$
	is collinear with an equals:	r r ad b+3c is collinear w	ith a (λ being some	non-zero scalar) then $a + 2b + 6c$
	(a) λa^r	(b) λb	(c) λ	(d) 0
61.			s $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$	which displace it from a point
	$\hat{i} + 2\hat{j} + 3\hat{k}$ to the poin	t $5\hat{i} + 4\hat{j} + \hat{k}$. The work	done is standard units	by the forces is given by:
	(a) 40	(b) 30	(c) 25	(d) 15
62.			a real number, then th	e vectors $\overline{a} + 2\overline{b} + 3\overline{c}$, $\lambda \overline{b} + 4\overline{c}$ and
	$(2\lambda-1)\bar{c}$ are non-cop	lanar for:	(b) all argant one w	alva of 1
	(a) all values of λ(c) all except two values	lues of a	(b) all except one value(d) no value of λ	arue or λ
63.	<u>-</u>			ong \overline{u} is equal to that of \overline{w} along
			r then $ \overline{\mathbf{u}} - \overline{\mathbf{v}} + \overline{\mathbf{w}} $ equal	
			-	
	(a) 2	(b) $\sqrt{7}$	(c) $\sqrt{14}$	(d) 14
64.	Let \bar{a} , \bar{b} and \bar{c} be no	n-zero vectors such tha	at $(\bar{a} \times \bar{b}) \times c = 1 b \bar{c} $ a. 3	If θ is the acute angle between
	the vectors b and c, t	hen sin θ equals:	J	Γ
	(a) $\frac{1}{3}$	$(b) \frac{\sqrt{2}}{3}$	(c) $\frac{-2}{3}$	$ (d) \frac{\sqrt[4]{2}}{3} $
65.		enputed from histogram bendent of change of correct?	origin and scale	ndependent of change of scale (d) (i), (ii) and (iii)
66.	In a series of 2n obs	(b) only (ii) servations, half of ther rvations is 2, then a	n equal a and remaini	ing half equal -a. If the standard $\sqrt{}$
	(a) $\frac{1}{n}$	(b) 2	(c) 2	$ \begin{array}{c} $
67.	The probability that A	speaks truth is $\frac{4}{5}$ wh	ile this probability for	B is $\frac{3}{4}$. The probability that they
	contradict each other	when asked to speak		_
	(a) $\frac{3}{20}$	(b) $\frac{1}{5}$	(c) $\frac{7}{20}$	(d) 4/5
68.		has the probability d		
	X: 1 P(X): 0.15	2 3 0.23 0.12	4 5 0.10 0.20	6 7 8 0.08 0.07 0.05
				0.08 0.07 0.05 probability P(E \cup F) is: (d) 0.50
69.		riance of a binomial d	istribution are 4 and 2	respectively. Then the probability
	of 2 successes is:			

	(a) $\frac{37}{256}$	b) $\frac{219}{256}$	(c) $\frac{128}{256}$	(d) $\frac{28}{256}$
70.	With two forces acting at act at right angles, then	•		when their resultant is 4N. If they
	(a) $(2+\sqrt{2})$ N and $(2-\sqrt{2})$ 1	N	(b) $(2+\sqrt{3})$ N and $(2-\sqrt{3})$	$\sqrt{3}$)N
	(c) $ 2 + \frac{1}{\sqrt{2}} N \text{ and } 2 - \frac{1}{\sqrt{2}} N an$	$\begin{pmatrix} 1 & \sqrt{2} & \mathbf{N} \\ 1 & \sqrt{2} & \mathbf{N} \end{pmatrix}$	(d) $\begin{vmatrix} 2+-\sqrt{3} \mid N \text{ and } \end{vmatrix}$	$ \begin{array}{c c} 2\sqrt{3} \mid N \\ 1 \\ 2 \end{array} $
71.	In a right angle ∆ABC, ∠	$(A = 90^0 \text{ and sides a,})$	b, c are respectively,	5cm, 4 cm and 3 cm. If a force
	r F has moments 0, 9 and of r F is:	d 16 in N cm unit i	respectively about vert	tices A, B and C, the magnitude
		b) 4	(c) 5	(d) 9
72.	Three forces $\stackrel{r}{P}$, $\stackrel{r}{Q}$ and $\stackrel{r}{R}$	acting along IA, IB	and IC, where I is	the incentre of a ΔABC, are in
	equilibrium. Then $P:Q:$	r R is:		
	(a) $\cos \frac{A}{2} : \cos \frac{B}{2} : \cos \frac{C}{2}$ (b) $\sin \frac{A}{2} : \sin \frac{B}{2} : \sin \frac{C}{2}$	(c) $\sec \frac{A}{2} : \sec \frac{B}{2} : \sec \frac{C}{2}$	(d) $\csc \frac{A}{2} : \csc \frac{B}{2} : \csc \frac{C}{2}$
73.		e of 5 km/h. If AB =	= 12 km and BC = 5	rate of 4 km/h and then towards km, then its average speed for its to C are respectively:
	(a) $\frac{17}{4}$ km/h and $\frac{13}{4}$ km/h		(b) $\frac{13}{4}$ km/h and $\frac{17}{4}$ km	m/h
	(c) $\frac{17}{9}$ km/h and $\frac{13}{9}$ km/h		(d) $\frac{13}{9}$ km/h and $\frac{17}{9}$ km	m/h
74.	A velocity $\frac{1}{4}$ m/s is res	solved into two comp	onents along OA and	OB making angles 30° and 45°
	respectively with the given	ren veloeity. Then the	e component along O	OB is: $-\sqrt{}$
	(a) $\frac{1}{8}$ m/s (b) $\frac{1}{4}$ (3-1)m/s	(c) $\frac{1}{4}$ m/s	(d) $\frac{1}{8}(6-2)$ m/s
75.	If t_1 and t_2 are the times	of flight of two parti	cles having the same	initial velocity u and range R on
	the horizontal, then $t_1^2 + t_2^2 + t_3^2 + t_4^2 + t_4^2 + t_5^2 +$	r_2^2 is equal to:		
(a)	${u^2}$	b) $\frac{4u^2}{g^2}$	(c) $\frac{u^2}{2g}$	(d) 1
	S	5	-6	

	<u>AI</u>	EEE 2004 Mat	hematics Ans	swer Key	
	c	26.	b	51.	a
	a	27.	b	52.	a
	c	28.	b	53.	a
	d	29.	c	54.	b
	b	30.	c	55.	c
	d	31.	d	56.	c
	d	32.	b	57.	b
	a	33.	a	58.	a
	b	34.	a	59.	d
0.	c	35.	b	60.	d
1.	b	36	b	61.	a
2.	c	37.	d	62.	c
3.	b	38.	a	63.	c
4.	a	39.	c	64.	d
5.	c	40.	b	65.	c
6.	b	41.	a	66.	c
7.	a	42.	a	67.	c
8.	a	43.	c	68.	b
9.	b	44.	b	69.	d
0.	b	45.	a	70.	c
1.	a	46.	d	71.	c
2.	d	47.	c	72.	a
3	c	48.	d	73.	a
4.	a	49.	b	74.	d
5.	d	50.	a	75.	b