GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Examination December 2009

Subject code: 130901
Date: 19 / 12 /2009

Subject Name: Circuits and Networks
Time: $11.00 \mathrm{am}-1.30 \mathrm{pm}$
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1	(a) State and explain (i) Thevenin's theorem and (ii) Norton's theorem in	06
brief giving suitable examples.		
(b) What are Y-parameters and Z-parameters? Derive the expression for Z	$\mathbf{0 6}$	
(c) How inductor and capacitor will behave at $\mathrm{t}=0$ and at $\mathrm{t}=\infty$. Draw	$\mathbf{0 2}$	
equivalent networks.		

Q. 2 (a) What is duality? Prepare a list of dual quantities encountered in electrical 07 engineering. Describe the procedure to draw dual of a network.
(b) Determine the current through 4Ω resistor branch of the network given in $\mathbf{0 7}$ Fig 1. using mesh analysis

OR

(b) In the network of Fig. $\mathbf{2}$ using node analysis find V_{2} which results in zero $\mathbf{0 7}$
current through 4Ω resistor.
Q. 3 (a) A network with magnetic coupling is shown in Fig.3. For the network 04 $\mathrm{M}_{12}=0$ Formulate loop equations for this network using KVL.
(b) Determine the equivalent inductance at terminals A-B for circuit in Fig. 402
(c) Explain the rules for source transformation technique. For the network 08 shown in Fig. 5 determine the numerical value of current i_{2} using source transformation technique.

OR

Q. 3 (a) State and explain the maximum power transfer theorem. Derive the 06
condition for maximum power transfer to the load for d.c. circuits.
(b) For the network shown in Fig. 6 determine the value of R_{L} for maximum
power transfer. What will be the value of power transfer under this
condition?
Q. 4 (a) For the network shown in Fig. 7 switch K is closed at time $\mathrm{t}=0$ with zero $\mathbf{1 0}$
inductor current and zero capacitor voltage. Solve for
(i) V_{1} and V_{2} at $t=0^{+}$
(ii) V_{1} and V_{2} at $t=\infty$
(iii) $\mathrm{dV}_{1} / \mathrm{dt}$ and $\mathrm{dV}_{2} / \mathrm{dt}$ at $\mathrm{t}=0^{+}$
(iv) $\mathrm{d}^{2} \mathrm{~V}_{2} / \mathrm{dt}^{2}$ at $\mathrm{t}=0^{+}$
(b) In the network of Fig. 8 steady state is reached with switch K open. At $t=04$ 0 switch K is closed. Find $\mathrm{i}(\mathrm{t})$ for the numerical values given.

OR

Q. 4 (a) State the procedure to obtain solution of a network using Laplace 06 transform technique. State its advantages over classical method.
(b) For the circuit shown in Fig. 9 obtain the transform of the generator 03 current $\mathrm{I}(\mathrm{s})$.
(c) A series R-L-C circuit having initially zero inductor current and zero capacitor voltage is excited by a 20 V d.c. source. Find $i(t)$. Assume $\mathrm{R}=$ $9 \Omega, L=1 \mathrm{H}$ and $\mathrm{C}=0.05 \mathrm{~F}$.
Q. 5 (a) What is meant by poles and zeros of network function? State its important features and explain its physical significance.
(b) Obtain ABCD parameters for the network shown in Fig. 10

OR

Q. 5 (a) Give the definition of the following:
(i) Graph
(ii) Branch
(iii) Node
(iv) Tree
(b) Draw the graph for the circuit shown in Fig.11. Prepare the incidence matrix A and partition it into a matrix containing all passive branches Ap and a matrix containing independent current sources branches Ag. Formulate the branch admittance matrix Yp and hence find node admittance matrix Yn

