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Seat No.: _____                                                         Enrolment No.______ 
   

GUJARAT TECHNOLOGICAL  UNIVERSITY 
B.E. Sem-III  Regular / Remedial Examination December 2010 

 

Subject code: 130001             Subject Name: Mathematics – 3 
Date: 11 /12 /2010                       Time: 10.30 am – 01.00 pm  

                                                               Total Marks: 70 

Instructions: 
1. Attempt all questions.  

2. Make suitable assumptions wherever necessary. 

3. Figures to the right indicate full marks. 
 

Q.1    Do as directed.                                                                               

a) Solve : yyyx +=′ 2
 

b) Find a second order homogeneous linear differential equation for which the 

functions
2x , 2x xlog  are solutions. 

c) Find the convolution of t  and te . 

d) Evaluate : ∫ 
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e) Solve : 022 =+′+′′ yyy ,   ( ) 10 =y ,     0
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f) Find ( )( )
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g) Compute : 
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Q.2  (a) Using the method of variation of parameters find the general solution of the 

differential equation 

( ) xexyDD 2

3

2 312 =+− . 
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  (b) 

 

 

 

 

 

Attempt all. 

1) Solve the initial value problem ( ) 231 1 +=+−′ − xyxy ,            ( ) 11 −= ey . 

2) Find the orthogonal trajectories of the curve cxy += 2
. 

3) Find a basis of solution for the differential equation ,02 =+′−′′ yyxyx  if 

one of its solutions is xy =1 .                                                       

09 

  OR  

  (b) Attempt all. 

1) Solve : ( ) 421
3

1
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1
xxyy −=+′ . 

2) Solve the initial value problem ,0=+ RI
dt

dI
L   0)0( II =  , where R ,L and I0 

being constants.  

3) Prove that 
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Q.3  (a) Using Laplace transforms solve the initial value problem ,2sin tyy =+′′  

( ) ( ) 10,20 =′= yy . 
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 2 

 (b) 

 

Find the Fourier cosine series of the periodic function 

( ) ( ) LpLxxxf 2,0; =<<= . Also sketch ( )xf  and its periodic extension. 

05 

 

 (c)     Using the method of undetermined coefficient, find the general solution of the 

differential equation .325102 2 +=+′+′′ xyyy   

04 

 

      OR  

Q.3  (a) Find the Fourier series of the periodic function ( ) xxf ππ sin= ,    ( )10 << x ,    

12 == Lp . 

05 

 (b) Solve the initial value  problem 2484 22 ++=+′′ − xeyy x
,  ( ) 20 =y ,    ( ) 20 =′y . 05 

  (c) Find the complex Fourier series of the function ( ) xxf = ,  ( )π20 << x ,    

π22 == Lp .  

04 

Q.4  (a) Find a series solution of the differential equation ( ) 02232 =−+′+′′ yxyxyx by 

Frobenious method. 

06 

  (b) Find the Laplace Transforms of  

1)  πsin2t t                             2)  ( )2−tue t  
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  (c) Find the inverse Laplace Transformation of  

1)  
22
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  OR  

Q.4  (a) Attempt all. 

1) Express ( ) 13 ++= xxxf  in terms of Legendre’s polynomials. 

2) Show that ( ) ( )∫
−

=
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,0dxxPxP nm   .nifm ≠  
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 (b) Find the general solution of the equation ( ) xxyxDDx cos22 322 =+− . 04 

  (c) 
State Convolution theorem and use to evaluate 

( ) 
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Q.5  (a) Using the method of separation of variables, solve the partial differential equation 

yxx uu 16= . 
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 (b) 

Show that ∫
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  (c) 
Prove that ( ) ( ) ( )xJ

x
xJxJ 101
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  OR  

Q.5  (a) Using Laplace transform, find the solution of the initial value problem 
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,   ( ) ,0;00, ≥= ifxxu   ( ) .0,0,0 ≥= ifttu  

06 

 (b) 
Find the Fourier Transforms of the Function ( )
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  (c) Show that ( ) ( ) ( )xPxP n

n

n 1−=− .Hence find ( ).1−nP  03 
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