Enrolment No.	Enrol	lment	No.
---------------	-------	-------	-----

Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-III Remedial Examination March 2010

Subject code: 130001 Date: 09 / 03 / 2010			v		
Inst	Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.				
Q.1	(a)	(1)	Find the solution of differential equation $y e^{x} dx + (2y + e^{x}) dy = 0$, where $y(0) = -1$.	02	
		(2)	Find the solution of differential equation $y'' + 4y = 2 \sin 3x$ by method of undetermined coefficient.	02	
		(3)	Find $L^{-1}\left\{-\frac{s+10}{s^2-s-2}\right\}$.	03	
	(b)		If possible, find the series solution of $y'' = y'$. Find the Fourier series of $f(y) = y + \frac{1}{2} = \frac{1}{2} = \frac{1}{2}$	03	
			Find the Fourier series of $f(x) = x + x $, $-\pi < x < \pi$	04	
Q.2	(a)	(1) (2)	Find the particular solution of $y'' - 2y' + 5y = 5x^3 - 6x^2 + 6x$.	02 02	
			Evaluate $\int_{0}^{\infty} x^{m} e^{-ax^{n}} dx$.	03	
	(b)		Solve the partial differential equation $u_{xy} = -u_x$. Evaluate $\int_{-1}^{1} (1+x)^m (1-x)^n dx$, where $m > 0$, $n > 0$ are integers.	03 03	
		(2)	Find the solution of Wave equation $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$ under the conditions	04	
			(i) $u(0,t)=0$, for all t, (ii) $u(1,t)=0$ for all t,		
			(iii) $u(x,0) = f(x) = \begin{cases} 2kx & \text{if } 0 < x < 1/2 \\ 2k(1-x) & \text{if } 1/2 < x < 1 \end{cases}$ (iv) $\left(\frac{\partial u}{\partial t}\right)_{t=0} = g(x) = 0$.		
	(b)	(1)	OR Find general solution of $y'' + 9y = sec 3x$ by method of variation of	03	
		(2)	parameter. Get the Laplacian operator in cylindrical coordinates.	04	
Q.3	(a)	(1)	Find $L^{-1}\left\{\frac{s^3+2s^2+2}{s^3(s^2+1)}\right\}$.	03	
		(2)	State Convolution theorem and use it to evaluate Laplace inverse	04	
	(b)	(1)	of $\frac{a}{s^2(s^2+a^2)}$. Find the Loplace transform of helf were metification of \cdot we defined.	02	
	(b)	(1)	Find the Laplace transform of half-wave rectification of sin ωt defined by $f(t) = \begin{cases} \sin \omega t & \text{if } 0 < t < \frac{\pi}{\omega} \\ 0 & \text{if } \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$ where $f\left(t + \frac{2n\pi}{\omega}\right) = f(t)$ for all integer <i>n</i> .	03	

		(2)	Find a series solution of differential equation $xy'' + 2y' + xy = 0$.	04
			OR	
Q.3	(a)	(1)	Find $L^{-1}\left\{\frac{s^3}{s^4-81}\right\}$.	03
		(2)	By Laplace transform solve, $y'' + a^2 y = K \sin at$.	04
	(b)	(1)	Find the inverse transform of the function $ln\left(1+\frac{w^2}{s^2}\right)$.	03
		(2)	Find a series solution of differential equation $(x^2 - x)y'' - xy' + y = 0$.	04
Q.4	(a)	(1)	Solve the differential equation $y' + y \sin x = e^{\cos x}$.	03
		(2)	Solve the Legendre's equation $(1-x^2)y''-2xy'+n(n+1)y=0$ for $n=0$.	04
	(b)	(1)	Write the Bessel's function of the first kind. Also derive $J_0(x)$ and $J_1(x)$	03
	. ,	. ,	from it.	
		(2)	Prove that $J_{0}'(x) = -J_{1}(x)$.	04
			OR	
Q.4	(a)	(1)	Solve the differential equation $y' + 6x^2 y = \frac{e^{-2x^3}}{x^2}$, where $y(1) = 0$.	03
		(2)	Obtain the Legendre's function as a solution of $(1-x^2)y''-2xy'+2y=0$.	04
	(b)	(1)	Discuss the linear independency/dependency of Bessel's functions $J_n(x)$ and $J_{-n}(x)$.	03
		(2)	Show that $J_1'(x) = J_0(x) - x^{-1}J_1(x)$.	04
Q.5	(a)	(1)	Solve $(x^2D^2 - 3xD + 3)y = 3lnx - 4$.	03
		(2)	Find Fourier series expansion of $f(x) = x^2/2$, $(-\pi < x < \pi)$	04
	(b)	(1)	Prove that $\int_{0}^{\infty} \frac{1 - \cos \pi w}{w} \sin x w dw = \begin{cases} \pi/2 & \text{if } 0 < x < \pi \\ 0 & \text{if } x > \pi \end{cases}.$	03
		(2)	Find Fourier sine series of $f(x) = \pi - x$, $(0 < x < \pi)$.	04
		(2)		νŦ
05	(a)	(1)	OR	02
Q.5	(a)	(1)	Solve $(D^2 + 4D + 4)y = \frac{e^{-2x}}{x^2}$.	03
		(2)	Sketch the function $f(x) = x + \pi$, $(-\pi < x < \pi)$ where $f(x+2\pi) = f(x)$ and	04
		. /	find its Fourier series.	
	(b)	(1)	Find the Fourier cosine integral of $f(x) = e^{-kx}$, where $x > 0$, $k > 0$.	03
		(2)	Find Fourier cosine series of $f(x) = e^x$, $(0 < x < L)$.	04
		(-)		
