B4.2-R3: DISCRETE STRUCTURES

NOTE:

1. Answer question $\mathbf{1}$ and any FOUR questions from $\mathbf{2}$ to $\mathbf{6}$.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3.

a) Can a relation R in a set A be both symmetric and anti symmetric? Justify your answer.
b) Write the negation of the following by changing the quantifiers:
"Every complete bipartite graph is not planar."
c) Prove absorption law in a Boolean algebra.
d) How many ways can one right and one left shoe be selected from 10 pairs of shoes without obtaining a pair?
e) What is the largest possible number of vertices in a graph with 35 edges and all vertices of degree at least 3 ?
f) Find a grammar to generate the set $\left\{0^{m} 1^{n} \mid m\right.$ and n are non negative integers $\}$
g) Let ($\mathrm{A},{ }^{*}$) be an algebraic system, where * is a binary operation such that for any a and b in A
a*b = a
Show that this operation is associative.
2.
a) Suppose R is an arbitrary transitive and reflexive relation on a set A. Prove that the relation E defined by " $x E y$ iff $x R y$ and $y R x$ " is an equivalence relation.
b) Prove or disprove the validity of the following argument:
i) Every living thing is a plant or animal.
ii) Ram's dog is alive and is not a plant.
iii) All animals have heart.
iv) Hence Ram's dog has a heart.
3.
a) Prove that if R is a partial ordering relation on a set S, then for $n \geq 2$, there can not be a sequence $s_{1}, s_{2}, s_{3}, \ldots . . s_{n}$ of distinct elements of S such that $s_{1} R s_{2} R s_{3} \ldots R s_{n} R s_{1}$.
b) Minimize following switching function

$$
\Sigma_{\mathrm{m}}(0,2,8,12,13)
$$

c) Consider the group $\left(Z_{4}, \oplus\right)$: the integer modulo 4 group with respect to the operation \oplus : addition modulo 4. Does $\mathrm{H}=\{[0]$, [2] $]$ form a subgroup of Z_{4}. If yes, is it a normal subgroup? Justify.
(6+6+6)
4.
a) Solve the following:

$$
\begin{aligned}
& a_{n}=2 a_{n-1}+1 \\
& \text { where } \\
& a_{0}=0 \\
& a_{1}=1 \\
& a_{2}=3 .
\end{aligned}
$$

b) Find a generating function to count the number of integral solutions of $e_{1}+e_{2}+e_{3}=10$ if for each $i, \quad 0 \leq e_{i}$
5.
a) Show that complement of a regular set is a regular set.
b) Write a grammar/ regular expression for the language on the alphabet $\{0,1\}$ having all the strings with different first and last symbols.
c) Find a deterministic finite state machine that recognizes the set:

$$
\begin{equation*}
\mathrm{L}=\left\{0^{\prime} 10^{\prime} \mid i \geq 1, j \geq 1\right\} \tag{6+6+6}
\end{equation*}
$$

6.

a) Apply Dijkstra's algorithm to determine a shortest path between a and z in the following graph:

The numbers associated with the edges are distances between vertices.
b) Obtain the principal conjunctive normal form and principal disjunctive normal form of the formula S given by

$$
(\neg \mathrm{P} \rightarrow \mathrm{R}) \Lambda(\mathrm{Q} \leftrightarrow \mathrm{P})
$$

c) State Pigeon hole principle. Show that in a sequence of $n^{2}+1$ distinct integers, there is either an increasing subsequence of length ${ }_{(n+1)}$ or decreasing subsequence of length.
(6+6+6)

