B4.2-R3: DISCRETE STRUCTURES

NOTE:

1.	Answer question 1 and any FOUR questions from 2 to 6.
2.	Parts of the same question should be answered together and in the same
	sequence.

Time: 3 Hours

Total Marks: 100

- 1.
- a) Can a relation R in a set A be both symmetric and anti symmetric? Justify your answer.
- b) Write the negation of the following by changing the quantifiers: "Every complete bipartite graph is not planar."
- c) Prove absorption law in a Boolean algebra.
- d) How many ways can one right and one left shoe be selected from 10 pairs of shoes without obtaining a pair?
- e) What is the largest possible number of vertices in a graph with 35 edges and all vertices of degree at least 3?
- Find a grammar to generate the set
 {0^m1ⁿ} m and n are non negative integers}
- g) Let (A,*) be an algebraic system, where * is a binary operation such that for any a and b in A
 - a*b = a

Show that this operation is associative.

(7x4)

2.

- a) Suppose R is an arbitrary transitive and reflexive relation on a set A. Prove that the relation E defined by "x E y iff x R y and y R x" is an equivalence relation.
- b) Prove or disprove the validity of the following argument:
 - i) Every living thing is a plant or animal.
 - ii) Ram's dog is alive and is not a plant.
 - iii) All animals have heart.
 - iv) Hence Ram's dog has a heart.

(9+9)

3.

- a) Prove that if R is a partial ordering relation on a set S, then for $n \ge 2$, there can not be a sequence $s_1, s_2, s_3, \ldots s_n$ of distinct elements of S such that $s_1 R s_2 R s_3 \ldots R s_n R s_1$.
- b) Minimize following switching function

 $\Sigma_{\rm m}(0,\,2,\,8,\,12,\,13$).

c) Consider the group (Z_4 , \oplus): the integer modulo 4 group with respect to the operation \oplus : addition modulo 4. Does H={[0], [2]} form a subgroup of Z₄. If yes, is it a normal subgroup? Justify.

(6+6+6)

4.

- a) Solve the following:
 - $a_n = 2 a_{n-1} + 1$ where $a_0 = 0$ $a_1 = 1$ $a_2 = 3$.

b) Find a generating function to count the number of integral solutions of

 $e_1 \ + \ e_2 + \ e_3 \ = \ 10 \ \text{if for each } i, \ 0 \ \le e_i$

(9+9)

- 5.
- a) Show that complement of a regular set is a regular set.
- b) Write a grammar/ regular expression for the language on the alphabet{0,1} having all the strings with different first and last symbols.
- c) Find a deterministic finite state machine that recognizes the set: L={ $0^{i}10^{j} | i \ge 1, j \ge 1$ }

(6+6+6)

6.

a) Apply Dijkstra's algorithm to determine a shortest path between a and z in the following graph:

The numbers associated with the edges are distances between vertices.

b) Obtain the principal conjunctive normal form and principal disjunctive normal form of the formula S given by

 $(\neg P \rightarrow R) \Lambda (Q \leftrightarrow P)$

c) State Pigeon hole principle. Show that in a sequence of n^2+1 distinct integers, there is either an increasing subsequence of length_(n+1) or decreasing subsequence of length.

(6+6+6)