B4.2-R3: DISCRETE STRUCTURES

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3.

a) i) Determine the power sets of $\{\phi,\{\phi\}\}$.
ii) Let $S=\{2,5, \sqrt{ } 2,25, \pi, 5 / 2\}$ and $T=\{4,25, \sqrt{ } 2,6,3 / 2\}$

Find $S \cap T$ and $T \times(S \cap T)$.
b) For integers a, b define $a \sim b$ if and only if $2 a+3 b=5 n$ for some integer n. Show that \sim defines an equivalence relation on Z.(set of Integers).
c) Define a Monoid.
d) Draw the Hassediagrams for each of the following partial orders.
i) $\quad(\{1,2,3,4,5,6\}, \leq)$
ii) $\quad(\{\{a\},\{a, b\},\{a, b, c\},\{a, b, c, d\},\{a, c\},\{c, d\}\}, \subseteq)$
e) What is a Spanning tree?
f) Write the converse, inverse and contrapositive of $\mathrm{P} \rightarrow \mathrm{Q}$.
g) Show that the functions $f: R \rightarrow(1, \infty)$ and $g:(1, \infty) \rightarrow R$

Defined by $\mathrm{f}(\mathrm{x})=3^{2 \mathrm{x}}+1, g(x)=\frac{\log _{3}(x-1)}{2}$ are inverse of each others.
2.
a) Find the principal disjunctive normal form of $(P \wedge Q) \vee(\sim P \wedge R) \vee(Q \wedge R)$.
b) Show that $\sim(P \wedge Q)$ follows from $\sim P \wedge \sim Q$.
c) In a group of 25 students, 12 have taken Mathematics, 8 have taken Mathematics but not Biology. Find the number of students who have taken Mathematics and biology and those who have taken Biology but not Mathematics.
3.
a) For any $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ in a lattice (A, \leq), if $\mathrm{a} \leq \mathrm{b}$ and $\mathrm{c} \leq \mathrm{d}$ then Prove that $(\mathrm{a} \vee \mathrm{c}) \leq(\mathrm{b} \vee \mathrm{d})$ and $(a \wedge c) \leq(b \wedge d)$ (where \vee is join and \wedge is meet operation).
b) Prove that if the meet operation is distributive over the join operation in a lattice, then the join operation is also distributive over the meet operation.
c) Minimize the following expressions using Karnaugh map.

$$
F=A B \bar{C}+\bar{A} B \bar{C}+A \bar{B} \bar{C}+\bar{A} \bar{B} \bar{C}
$$

4.

a) Apply Dijkstra's algorithm to the graph given below and find the shortest path from a to f. (Show all the steps)

b) Define briefly the following:
i) Cut set
ii) Hamiltonian path
iii) Bipartite Graph
iv) Isomorphic graph
c) For the following graph, find its spanning tree of minimal Cost using Kruskal algorithm.

(8+4+6)
5.
a) In how many ways 7 women and 3 men are arranged in a row if the 3 men must always stand next to each other.
b) i) State pigeonhole principle.
ii) Suppose that a patient is given a prescription of 45 pills with the instruction to take at least one pill per day for 30 days. Then prove that there must be a period of consecutive days during which the patient takes a total of exactly 14 pills.
c) If Fn satisfies the Fibonacci relation for the Fibonacci series (1,1,2,3...) defined by the recurrence relation, $F_{n}=F_{n-1}+F_{n-2}, F_{0}=F_{1}=1$ then prove that $n t h$ Fibonacci number is given by (for $n=0,1,2,3,----------$).

$$
\begin{equation*}
F_{n}=\frac{1}{2^{n} \sqrt{5}}\left[\left(1+\sqrt{5}^{n}\right)-\left(1-\sqrt{5}^{n}\right)\right] \tag{6+6+6}
\end{equation*}
$$

6.

a) Prove that for any a and b in a Boolean algebra

$$
\begin{aligned}
& \overline{A \vee B}=\bar{A} \wedge \bar{B} \text { and } \\
& \overline{A \wedge B}=\bar{A} \vee \bar{B}
\end{aligned}
$$

b) Define the following terms:
i) Permutation of a set
ii) Abelian group
iii) Subgroup
iv) Group Homomorphism.
c) Prove that every finite group of order n is isomorphic to a permutation group of degree n.
7.
a) Prove by mathematical induction the following, $3^{n}>n^{3}$ for $n>3$.
b) Find the regular expressions for a Valid Identifier of any length in C language:
(The rule of an Identifier in C language is that first character is an alphabet or an Underscore and the consequent letters are alphabet and/or digit and/or underscore, no extra symbols are allowed except defined above).
c) Define a finite State Machine.
d) Calculate the greatest common divisor of 240 and 70(Step wise) by using Euclid's algorithm.

