B4.2-R3: DISCRETE STRUCTURES

NOTE:

1. Answer question 1 and any FOUR questions from 2 to 7.
2. Parts of the same question should be answered together and in the same sequence.
Time: 3 Hours
Total Marks: 100
3.

a) How many elements does each of these sets have?
$\mathrm{P}(\{\mathrm{a}, \mathrm{b},\{\mathrm{a}, \mathrm{b}\}\}), \mathrm{P}(\{\Phi, \mathrm{a},\{\mathrm{a}\},\{\mathrm{a}\}\}\}), \mathrm{P}(\mathrm{P}(\Phi)), \mathrm{P}(\Phi)$
Here $P(A)$ represents power set of A.
b) Let f be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$ and $f(c)=1$. Is function f invertible and if it is what is its inverse?
c) State the converse, contra positive and inverse of the following:
"A positive integer is a prime only if it has no divisor other than 1 and itself."
d) How many edges does a graph have if it has vertices of degrees 5, 2, 2, 2, 2, 1?
e) Find the duals of
$\mathrm{x}(\mathrm{y}+0)$ and $\bar{x} .1+(\bar{y}+z)$
f) What is the coefficient of $x^{3} y^{2} z^{3}$ in $(x+y+z)^{9}$.
g) Write a grammar that generates the $\operatorname{set}\left\{0^{n} 1^{2 n} \mid n=0,1 \ldots\right\}$
2.
a) Show that the relation R on $Z X Z$ defined by $(a, b) R(c, d)$ if and only if $a+d=b+c$ is an equivalence relation. Write three equivalence classes.
b) Let G be the set of all nonzero real numbers and let a*b = ab/2
Show that ($G,{ }^{*}$) is an abelian group.
c) Show that among any group of five (not necessarily consecutive) integers, there are two with the same remainder when divided by 4.
3.
a) Consider the following truth table:-

P	Q	R	S
1	1	1	0
1	1	0	0
1	0	1	1
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	0

Construct a Boolean Expression having this table as truth table. Simplify this expression. Also construct a circuit having P, Q, R as input and S as output.
b) Solve the following recursive relations:
$a_{n+1}-1.5 a_{n}=0 ; n>=0$
$a_{n}=5 a_{n-1}+6 a_{n-2} ; n>=2 ; a_{0}=a_{1}=3$
c) Let $Q(x, y, z)$ be the statement " $x+y=z$ ". What are the truth values of the statements?
$\exists \forall \mathrm{x} \forall \mathrm{y} \exists \mathrm{z} \mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ and $\exists \mathrm{z} \forall \mathrm{x} \forall \mathrm{y} \mathrm{Q}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
(6+6+6)
4.
a) Construct a grammar for the language:
$L=\left\{w \mid n_{a}(w)>=n_{b}(w)\right\}$. Where $w \varepsilon(a+b)^{*}$ and $n_{a}(w)$ represents number of a's in W.
b) Find a finite state machine that recognizes the language:
$\left\{10^{n} \mid n \geq 0\right\} \cup\left\{10^{n} 10^{m} \mid n, m \geq 0\right\}$
c) Prove that for any a, b in a Boolean algebra B
i) $\quad a+a . b=a$
ii) $\quad a .(a+b)=a$
5.
a) Show that in any simple connected planar graph, $e \geq 3 f / 2$ and $e \leq 3 n-6$. Here $n=$ number of vertices, $e=$ no. of edges and $f=$ no. of regions.
b) Define a Hamiltonian graph. Define Euler Graph. Give an example of each.
c) Give a simple condition on the weights of a graph that will guarantee that there is a unique minimum spanning tree for the graph.
(6+6+6)
6.
a) If a graph G is not connected, prove that complement of G is connected.
b) Write the assumptions (if any) made in Floyd -Warshall algorithm. Use this algorithm for the graph whose weight matrix is given below:

$$
\left[\begin{array}{cccc}
0 & 4 & -3 & \infty \\
-3 & 0 & -7 & \infty \\
\infty & 10 & 0 & 3 \\
5 & 6 & 6 & 0
\end{array}\right]
$$

c) Find the number of solutions of

$$
e 1+e 2+e 3=17
$$

Where e1, e2 and e3 are non negative integers with $2 \leq \mathrm{e} 1 \leq 5,3 \leq \mathrm{e} 2 \leq 6$ and $4 \leq \mathrm{e} 3 \leq 7$.
(6+6+6)
7.
a) Show that $((p \vee \neg q) \wedge(\neg p \vee \neg q)) \vee q$ is a tautology, where p and q are Boolean Variables.
b) Use generating function to find the number of k - combinations of a set with n elements. Assume that the Binomial theorem has already been established.
c) Explain following:
i) Simplification of machines
ii) Pigeon hole principle
iii) Partitioning of set

