S.E.(EXTC) sem 4 (Rev)

Electromagnetic wave theory

27/12/07

20

Con. 5243-07.

[REVISED COURSE]

[Total Marks: 100

(3	H	ou	rs)
1			

- N.B.: (1) Question No. 1 is compulsory.
 - (2) Answer any four out of the remaining six question.
 - (3) Assume suitable data if necessary.
 - (4) Figures to right indicates full marks.
- 1. Attempt any four of the following :-

(a) State and explain the divergence theorem.

- (b) Explain the need for modification of Ampere's law for time varying fields.
- (c) Explain the concept of Electric scalar potential.
- (d) Explain Ampere's circuital law.
- (e) State the Maxwells equation for static fields.
- Derive an expression for the Electric field intensity due to an infinite line charge. 10 2.
 - A uniform line charge, $P_L = 25$ nc/m lies on the line X = -3, Z = 4 in free space. 10 Find E in Cartesian components at the point P(2, 15, 3).
- (a) If $D = 4 \times y \overline{a}_x + 2(x^2 + z^2) \overline{a}_y + 4yz \overline{a}_z c/m^2$. Evaluate surface integral to find the 10 3. total charge enclosed in the rectangular parallelopiped 0 < x < 2, 0 < y < 3, $0 < z < 5 \, \text{m}$.
 - (b) If $\overline{E} = -8xy \, \overline{a}_x 4x^2 \overline{a}_y + \overline{a}_z \, v/m$. Find the work done in carrying a 6 coulombs 10 charge from A(1, 8, 5) to B(2, 18, 6) along the path y = 3x + 2, z = x + 4.
- (a) A potential function is V = 2x + 4y volts in free space. Find the stored energy in free 10 4. space in the 1m3 volume centered at the origin.
 - V = 0 volts for r = 0.1m and V + 100 volts for r = 2.0m in spherical co-ordinates. 10 (b) Assuming free space between the concentric spherical shelts, find E & D using Laplace's equation.
- Using Biot Savart law, find the magnetic field intensity due to an infinite long straight 10 5. filament placed along z-axis.
 - A square filamentary loop 2 meters in side is placed in Z = 0 plane with its center 10 at origin. If current of 10 A is passing through loop, find H at origin.
- State and explain Maxwell's equation for free space in time varying fields. 10 6. (a)
 - The circular loop conduction lies in the z = 0 plane, has a radius of $0 \cdot 1$ m and resistance 10 (b) of 5.0Ω . Given $\overline{B} = 0.20 \sin 10^3 t \ \overline{a}_z(T)$, determine the current in the loop.
- (a) For a electromagnetic wave prove that $\overline{E} \cdot \overline{H} = 0$ and $\overline{E} \times \overline{H}$ is having the direction 10 of propagation of wave.
 - Calculate the intinsic impedance η , the propagation constant γ , and the wave 10 velocity μ for a conducting medium in which σ = 58 M s/m, μ_{γ} = 1, at a frequency f = 100 MHz.