N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four out of remaining six.
(3) Assumptions made should be clearly stated.
(4) Assume data wherever required with justifications.
(5) Figures to the right indicate full marks.
(6) Illustrate answers with sketches wherever required.
(7) Use legible handwriting. Use a blue/black ink pen to write shers.
(8) Bold letters indicate vector quantities.

1. (a) What is the relation between electric potential and electric field int asiy ? What do you (03+01) understand by "conservative field"?
(b) What is scalar and vector magnetic potential? Give their exp with their units.
(c) What is the discrepancy in Ampere's Law? How was it remo by Maxwell?
(d) State Gauss's law for electrostatic fields. Using Gauss , derive expression for intensity due to an infinite line charge.
2. (a) Develop an expression for $\mathbf{E}$ due to a unifo charge density $\rho_{s}$ on an infinite sheet.
(b) A current filament of 5 amp in $y$-directio allel to the $y$-axis at $x=2, z=-2$. Find $H$ at the origin.
(c) Derive expression for the potential stored in a static electric field.

3 (a) A uniform line charge with length $\Psi / L$, crosses the on the $z=-3 \mathrm{~m}$ plane bounded by $y= \pm 2 \mathrm{~m}$ ?
(b) Currents in the inner and onder conductors of figure (1) are uniformly distributed over cross-section. Radi nner conductor is ' $a$ ' and the outer radii are ' b ' and ' c ' respectively. Find erywhere due to the cable:-
4. (a) If the zero potential reference is at $r=10 \mathrm{~m}$, and a point charge $\mathrm{Q}=0.5 \mathrm{nC}$ is at the d (gin find the potentials at $r=5 \mathrm{~m}$, and $\mathrm{r}=15 \mathrm{~m}$. At what radius is the potential the sar in magnitude as that at $r=5 \mathrm{~m}$ but opposite in sign?
(b) Verify Stoke's theorem for portion of a sphere $r=4,0 \leq \theta \leq 0.1 \pi, 0$ $\vec{H}=6 r \sin \phi \hat{r}+18 r \sin \theta \cos \phi \hat{\phi}$.
5. (a) In cylindrical coordinates, $\rho=5 \mathrm{~mm}$ and $\rho=25 \mathrm{~mm}$ have valages or Lero and Vo respectively. If $\mathrm{E}=-8.28 \hat{\mathrm{\rho}} \mathrm{KV} / \mathrm{m}$ at $\rho=15 \mathrm{~mm}$, find
outer conductor using Laplace's equation.
(b) State and explain Faraday-Lenz's law. Obtain p int f m and integral form of Maxwell's equation for induced motional and transoxmer emf.
6. (a) Derive general wave equations for and H -fields. Give solution to the wave equation
6. (a) Derive general wave equations for in in $z$-direction, which has only $x$-component of E-field.
(b) A uniform plane waves gates in a medium with $\varepsilon_{r}=4, \sigma=0, \mu_{r}=1$. The E-field has only $x$-component whi is sinusoidal with a frequency of 100 MHz and has maximum value $0.1 \backsim \mathrm{~V} / \mathrm{m}$ at $\mathrm{t}=0, \mathrm{z}=1 / 8$. Find instantaneous expression for $\mathrm{E}(\mathrm{z}, \mathrm{t})$ and $H(z, t)$. Also fin cation where Ex is positive maximum at $\mathrm{t}=10 \mathrm{~ns}$.


