S.E. Sem 4 (Rev.) Electromagnetic wave Theory 10/6/08

Con. 2671-08.

20

10

(REVISED COURSE)

(3 Hours)

[Total Marks: 100

N.B.(1) Question No. 1 is compulsory.

- (2) Attempt any four questions out of remaining six questions.
- (3) Assume any suitable data if necessary.
- (4) Figures to the right indicate full marks.
- Explain the following:
 - (a) Continuiting equation
 - (b) Method of images
 - (c) Polarization of EM waves
 - (d) Scalar and vector potentials.
- (a) Derive an expression for electric field intensity due to an infinite line charge.
 - 10 (b) A charge configuration is given by 10 $\rho_V = 5 \Omega e^{-2 \Omega} c/m^3$. Find D using Gauss's law.
- (a) Given that $\overline{A} = 30 e^{-\Omega} \frac{1}{a_r} 2z \frac{1}{a_z}$ in cylindricxal co-ordinate. Evaluate both sides of the 10 divergence theorem for the volume enclosed by r = 2, z = 0 and z = 5.
 - (b) Find the work done in moving point charge Q = 5 micro from the origin to (2m, $\pi/4$, $\pi/2$), 10 special co-ordinates in the field

$$\overline{E} = 5 e^{-\frac{r}{4}} \overline{a}_r + \frac{10}{r \sin \theta} \overline{a}_{\phi} \sqrt{M}$$

- (a) State and explain the boundary conditions for electro-magnetics. 10
 - (b) Find the total capacitance if plates are square with 500 mm side shown below: 10

- (a) Using Biot-Savarts law derive an expression for H due to an infinite long straight filament carrying a current of 'l' amp
 - (b) Find the potential function and the electric field itensity for the region between two concentric 10 right circular cylinders, where V = 0 at r = 1 mm and V = 150 V at r = 20 mm neglect fringing.
- (a) State and explain Maxwells equation in integral and point form free space.
 - (b) $\overline{H} = H_x$ (wt- βz) a_x exists within a dielectric of permittivity ϵ . Estimate the corresponding 10 displacement current density and then find the charge density. Electric field corresponding to H field.
- 10 (a) Define poynting vector. Obtain the integral form of poynting theorem and explain each of 7. the terms. 10
 - (b) Starting form Maxwell's equations derive the wave equation for free space.