\qquad
\qquad

GUJARAT TECHNOLOGICAL UNIVERSITY

MCA. Sem-I Examination January 2010

Subject code:610004
Subject Name: Fundamentals of Computer Organization
Date: 23/01/2010
Time: 12.00-2.30 pm
Total Marks: 70

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q. 1	(a)	Perform following operations :	
	i.	$745.81-436.62$ (Use 9's Complement Method)	
	ii.	$46-14$ (Use 8-bit 2's Complement Method)	
	iii.	$679.6+536.8$ (Use BCD addition)	
		iv.	$37+28$ (Use XS -3 Addition Method)
		v.	$10110-1011$
		vi.	1101.11×101.1
		vii.	$11110 / 101$

(b) Do as directed :
i. Convert (1762.46) 8 to its equivalent hex number. 01
ii. Convert (420.6) $)_{8}$ to its equivalent decimal number 01
iii. Convert Gray Code 101101 to binary number 01
iv. Detect and correct error in the message 0101101. 01 (Message is coded in even-parity hamming code)
v. Draw a basic structure of digital computer system. 03 Briefly state purpose of all components.
Q. 2 (a) i. Explain different types of printers. 04
ii. State the De Morgan's theorem for three variables in 03 both the forms and give the proof for one by the method of perfect induction.
(b) i. Simplify the following Boolean Expressions:
a. $A+B\left[A C+\left(B+C^{\prime}\right) D\right]$
b. $\left(A+B^{\prime} C\right)^{\prime}\left(A B^{\prime}+A B C\right)$
ii. Derive a Boolean expression in SOP form for 3- $\mathbf{0 3}$ variable majority function. Majority function generates output 1 when number of 1 s are more than number of 0 s in an input.

OR

(b) i. Reduce the following Boolean expression and draw a logic diagram using AOI logic : $\left.\left[\left(\mathrm{A}^{\prime}+(\mathrm{A}+\mathrm{B})\right)^{\prime}\right)\left(\mathrm{B}^{\prime}+(\mathrm{B}+\mathrm{C})^{\prime}\right)\right]{ }^{\prime}$
ii. Simplify following Boolean functions using 4-variable 03 K-map:
a. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(3,7,11,13,14,15)$
b. $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,4,6,8,10,12,14)$
c. $F(A, B, C, D)=\Sigma\left(m_{n}\right)$, where $\mathrm{n}: 0$ to 15
Q. 3 (a) i. Define flip-flop and explain its common characteristics. 02
ii. Explain 4-bit register transfer operation. 05
(b) i. Explain Integer representation of numbers in brief. 02
ii. Design a combinational circuit for full adder. 05
OR
Q. 3 (a) i. Explain concept of clocks and its importance in digital 02 computers.
ii. Explain 4-bit Binary Counter. 05
(b) i. Explain various components of ALU in brief. 02
ii. Explain 4-bit universal register. 05
Q. 4 (a) i. What is Decoder ? Explain Binary to Octal Converter. 04
ii. Write a brief note on RAM and its types. 03
i. Write down Zero address and One address instructions 04for $\mathrm{X}=(\mathrm{A}+\mathrm{B})^{*}(\mathrm{C}+\mathrm{D}) /(\mathrm{E}-\mathrm{F})$.ii. Explain memory stack.03
OR
Q. 4 (a) i. What is MUX ? Explain 4-to-1 line MUX. 04
ii. Write a brief note on ROM and its types. 03
(b) i. A two address instruction is stored in memory at an 04address designated by symbol W . The address field ofinstruction (stored at $\mathrm{W}+1$) is designated by Y . Theoperand used during execution of instruction is stored ataddress symbolized Z . An index register contains valueX . State ho Z is calculated from other address ifaddressing mode of instructions is: a) direct b) indirectc) relative d) indexed.
ii. What is RPN? Explain its importance with suitable 03 example.
Q. 5 (a) i. What are the types of commands that an I/O interface 02may receive? State their purpose.
ii. What is Asynchronous Data Transfer? Explain 05Handshaking method to implement it.
(b) i. What is Cache memory? Discuss in brief. 02
ii. Computer system needs 512 bytes of RAM and 512 05bytes of ROM. RAM chip available is of capacity 128bytes and ROM chip of capacity 512 bytes. Draw amemory address map for the computer system and alsodraw a connection structure.
OR
Q. 5 (a) i. Differentiate Isolated and Memory mapped I/O. 02
ii. Explain DMA operation. 05
(b) i. What is Virtual memory? Discuss in brief. 02
ii. Write a note on Magnetic Storage Devices. 05

