Roll No.

Total No. of Questions: 09]

|Total No. of Pages: 03

wiver all subjects 4 you com B. Tech. (Sem. - 1st/2nd)

ENGINEERING MATHEMATICS - I

SUBJECT CODE: AM - 101 (2K4)

Paper ID : [A0111]

[Note: Please fill subject code and paper ID on OMR]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- Section A is Compulsory.
- Attempt any Five questions from Section B & C. 2)
- Select at least Two Questions from Section B & C. 3)

Section - A

Q1)

(2 Marks Each)

- Find the equation of normal to the surface : $x^2 + y^2 + z^2 = a^2$. a)
- Examine the convergence of $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ b)
- Define a homogeneous function. c)

d) If
$$\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$$
, then what is $\beta(\frac{1}{2},\frac{1}{2})$?

- M.I. of rectangular lamina about its side is =? e)
- Name the curve represented by : $\frac{x^2}{a^2} \frac{y^2}{b^2} = \frac{2z}{c}$ f)

g) If
$$(3+x)^3 - (3-x)^3 = 0$$
, then prove that $x = 3i \tan \frac{r\pi}{3}r = 0, 1, 2,...$

- State DeMoivre's theorem. h)
- What is $i^i = ?$ i)
- i) State Ratio test.

Section - B

(8 Marks Each)

- **Q2)** (a) Use method of Lagrange's to find the minimum value of $x^2 + y^2 + z^2$, given that $xyz = a^3$.
 - (b) Expand $e^x \log(1 + y)$ up to six terms of the Taylor series in the neighborhood of (0,0).
- **Q3)** (a) If u = x + y + z, uv = y + z, uvw = z show that $\frac{\partial(x, y, z)}{\partial(u, v, w)} = u^2v$.
 - (b) if $u = \tan^{-1} \frac{x^3 + y^3}{x + y}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \sin 2x$.
- **Q4)** (a) Trace the curve $x^{2/3} + y^{2/3} = a^{2/3}$.
 - (b) Find the curvature and radius of curvature of the curve : $x = \theta \sin \theta$, $y = 1 \cos \theta$.
- Q5) (a) Show that the length of an arc of the cycloid: $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ is 8a.
 - (b) Find the volume generated by revolving the ellipse: $\frac{x^2}{16} + \frac{y^2}{9} = 1$ about the x-axis.

Section - C

(8 Marks Each)

- **Q6)** (a) Find the equation of the cone whose vertex is (1,2,3) and which passes through the circle $x^2 + y^2 + z^2 = 4$, x + y + z = 1.
 - (b) Find the centre and radius R of the circle $x^2 + y^2 + z^2 2y 4z = 11$, x + 2y + 2z = 15.
- **Q7)** (a) Change the order of integration in $I = \int_{0}^{4a^2} \int_{\frac{x^2}{4a}}^{4a} dy dx$ and hence evaluate it.
 - (b) Find the volume of the tetrahedron bounded by the coordinate axes and the plane x + y + z = a by triple integration.

Q8) (a) Sum the series : $\sin \alpha + \sin(\alpha + \beta) + \sin(\alpha + 2\beta) + \dots + \sin(\alpha + (n-1)\beta)$.

(b) If
$$x + iy = \cosh(u + iv)$$
 show that $\frac{x^2}{\cosh^2 v} + \frac{y^2}{\cosh^2 u} = 1$.

- Q9) (a) Find the interval of convergence of the series $x \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}} \frac{x^4}{\sqrt{4}} + \dots \infty$.
 - (b) Test the convergence of the series:

(i)
$$\sqrt{x^3+1}-x$$
.

(ii)
$$\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \dots \infty$$
.

