T.E| VI | Rev | ExC/ Probability \& Random pores/

$$
\text { Now }\left.\right|^{\text {cos }} \mid 11 \cdot T \cdot \text { EyAM. }
$$

CHOR. 4408-05.

(REVISED COURSE)

[Total Marks : 100
N.B. Answer any five questions.

1. (a) Let $B_{1}, B_{2} \ldots B_{n}$ be partitions of an event space $B_{i}, i=1,2, \ldots, n$, for the event B that has 10 occurred. Suppose now an event A occurs. Find expression for $P(B \mid A)$ in to B_{i}.
(b) Two balanced dices are being rolled simultaneously. If sum of the numbers how time by the 10 two faces is 7. What is the probability that the number shown by one of e to the dice in this case is 1 .
2. (a) Explain with sketches how the probabilistic behaviour of a random varia x is fined by its probability density function and its relation with cumulative distribution function expel value, and variance.
(b) Given $f(x)=c e^{-\alpha|x|}$ and $P[|x|<v]$. Find the value of normalize instant C and $F[|x|<v]$.
3. (a). (i) Explain what is a moment generating function of a ra
(ii) If X is a random variable and $f(x)$ is given by $=1 e^{-(x-a) / b}$, find the first and second moments of X.
(b) If X and Y are independent random variables an Z) $f(z)$ by the transform method.
4. (a) X and Y are random variables. Show that the inability density function of Y, given
$x=x$ is given by $f_{y}(y / x)=\frac{f_{x y}(x, y)}{f_{x}(x)} \quad X$ and re random variables.
(b) Given $\mathrm{f}_{\mathrm{xy}}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{l}\frac{8}{9} \mathrm{xy}, 1<\mathrm{x}<\mathrm{y} \\ 0, \text { Otherwise }\end{array}\right.$

Find the marginal density function of X and Y and conditional densities of Y given $X=x$, and of X given $Y=y$.
5. (a) X and Y are random variables. Soy hat their joint central moment is given by$C_{x y}(x, y)=R_{x y}(x, y)-E$
(b) $f_{x y}(x, y)=\left[\begin{array}{lll}2 e^{-x} e^{-y} & 0 & 0 \\ 0, & \text { en }\end{array}\right]$.

Find the correlation, emt int of X and Y . Are X and Y are independent.
6. (a) If $X(t)$ is an er rices show that -
$S_{x x}(w)=\int_{-\infty}^{\infty} R_{x x} e^{-j w} d \tau$ where $\tau=t_{2}-t_{1} \quad t_{1}$ and t_{2} being two instants of time.
(b) A random process is given by $X(t)=A \cos \left(\omega_{0} t+\theta\right)$, where A and ω_{0} is constant and θ is a random variable uniformly distributed in the interval ($-\pi,-\pi$,).
Determine the power spectrum density of $\mathrm{X}(\mathrm{t})$.
7. (a) (i) Explain how a random process can be described by a set of indexed random variables and hence derive expressions for its mean, autocorrelation and autocovariance functions. What will be properties of these functions, if the random process is wide-sense station / ?
(ii) Write down the expression of the probability density function if tr : process is gaussian. Hence
(b) A stationary process is given by-

$$
x(t)=10 \cos [100 t+\theta]
$$

where θ is a random variable with uniform probability distribution in the interval $[-\pi, \pi]$. Show that it is a wide sense stationary process.

