T.E. VI | Rev | ExTC / Probability & Random provers

NOV 1'05 11. T. EYAD

Con. 4408-05.

PR-4853

10

8

12

10

(REVISED COURSE)

(3 Hours)

[Total Marks : 100

N.B. Answer any five questions.

- 1. (a) Let B_1, B_2, \ldots, B_n be partitions of an event space B_i , $i = 1, 2, \ldots, n$, for the event B that has 10 occurred. Suppose now an event A occurs. Find expression for P(BIA) in terms of B_i .
 - (b) Two balanced dices are being rolled simultaneously. If sum of the numbers shown at a time by the 10 two faces is 7. What is the probability that the number shown by one of the face to the dice in this case is 1.
- (a) Explain with sketches how the probabilistic behaviour of a random variable X h defined by its probability 14 density function and its relation with cumulative distribution function expected value, and variance.
 - (b) Given $f(x) = ce^{-\alpha |x|}$ and P[|x| < v]. Find the value of normalization constant C and F [|x| < v]. 6
- 3. (a) (i) Explain what is a moment generating function of a random variable. 4
 - (ii) If X is a random variable and f(x) is given by $f(x) = -\frac{1}{x}e^{-(x-a)/b}$, find the first and second moments of X.
 - (b) If X and Y are independent random variables and z = x + y find f(z) by the transform method. 8
- 4. (a) X and Y are random variables. Show that the conditional probability density function of Y, given 10

X = x is given by
$$f_y(y/x) = \frac{f_{xy}(x,y)}{f_x(x)}$$
 X and Y we random variables.

(b) Given $f_{xy}(x, y) = \begin{cases} \frac{8}{9}xy, 1 < x < y < z \\ 0, Otherwise \end{cases}$

Find the marginal density function of X and Y and conditional densities of Y given X = x, and of X given Y = y.

 (a) X and Y are random variables. Show that their joint central moment is given by-C_{xy} (x, y) = R_{xy} (x, y) - E (X) E (Y)

(b)
$$f_{xy}(x, y) = \begin{bmatrix} 2 e^{-x} e^{-y} , 0 e^{-y} e^{-y} \\ 0, \\ 0, \\ 0 \end{bmatrix}$$
 (seware

Find the correlation, coefficient of X and Y. Are X and Y are independent.

6. (a) If X(t) is an ergodic process show that -

$$S_{xx}$$
 (w) = $\int H_{xx} (t) e^{-jwt} d\tau$ where $\tau = t_2 - t_1 t_1$ and t_2 being two instants of time.

- (b) A random process is given by $X(t) = A \cos(\omega_0 t + \theta)$, where A and ω_0 is constant and θ is a random 10 variable uniformly distributed in the interval $(-\pi, -\pi,)$. Determine the power spectrum density of X(t).
- (a) (i) Explain how a random process can be described by a set of indexed random variables and hence 8 derive expressions for its mean, autocorrelation and autocovariance functions. What will be properties of these functions, if the random process is wide-sense stational /?
 - Write down the expression of the probability density function if the process is gaussian. Hence 4 explain how a wide-sense stationary process, if gaussian, is stationary in the strict sense also.
 A stationary process is given by-
 - (b) A stationary process is given by-X(t) = 10 cos [100 t + θ]

where θ is a random variable with uniform probability distribution in the interval [$-\pi$, π]. Show that it is a wide sense stationary process.