540-E % 1stHf07

Con. 3358-07.

(REVISED COURSE)

ND-2002

```
(3 Hours)
```

[Total Marks : 100

N.B. Answer any five questions.

1.	(a)	(i) Conditional probability	2
	(b) (c)	 (i) A and B are independant (ii) A and B are independant. For a certain binary communication channel, the probability that a transmitted '0' is received as a '0' is 0.95 while the probability that a transmitted '1' is received as '1' is 1.90. If the probability of the probability of the probability that a transmitted '1' is received as '1' is 1.90. 	2 2
		transmitting a '0' is 0.4, find the probability that — (i) a '1' is received (ii) a '1' was transmitted given that '1' was received (iii) the error has occured.	3 4 3
2.	(a)		6
	(b)		6
	(c)	function. A continuous random variable has the probability density unction defined by — $f_x(x) = k \cdot x \cdot e^{-\lambda x}$; $x \ge 0$, $\lambda > 0$ = 0; else. Determine the constant K and find mean and variance.	8
3.	(a)		6
5.	(a)	$fy(y) = \frac{1}{ a } f_X \left(\frac{Y - b}{a} \right).$	0
	(b)	If a random variable X has uniform distribution in (-2, 2), find the probability density function $fy(y)$ of $Y = 3X + 2$.	4
	(c)	The joint probability density function of two dimensional random variable (x, y) is given by $-f_{xy}(x, y) = 4xy e^{-(x^2 + y^2)}, x \ge 0$, $y \ge 0$	
		 (i) Find the marginal density functions of x and y. (ii) Find the conditional density function of Y given that X = x and the conditional density function of X are with that Y = y. (iii) Check for undependence of X and Y. 	4 4 2
1	(2)		
4.	(a)	Prove that if two rendom variables are independant, then density function of their sum is given by convolution of their density functions.	8
	(b)	If X and Y are two independant exponential random variables with probability density functions given by	6
	19	$f_x(x) = 2 \cdot e^{-x} ; x \ge 0$ = 0 ; $x < 0$ and $f_y(y) = 3 \cdot e^{-3y} ; y \ge 0$ = 0 ; $v_0 < 0$	
9		Find the probability density function of $z = \dot{x} + y$.	
	(C)	The joint probability density function of (x, y) is $f_{xy}(x, y) = 8 \cdot e^{-(2x + \cdot 4y)}$; $x, y \ge 0$. If U = X / Y and V = Y, find the joint probability density function of (U, V) and hence find the probability density function of U.	6
5.	(a)	If X and Y are two random variables with standard deviations 6_x and 6_y and if C_{xy} is the covariance between them, then prove	
		(i) $C_{xy}(x, y) = R_{xy}(x, y) - E[X] \cdot E[Y]$	4
		(ii) $ C_{xy} \le 6x \cdot 6y$. Also deduce that $-1 \le p \le 1$.	4

541-E : 1stHf07

Con. 3358-ND-2002-07.

- (b) If $X = \cos \theta$ and $Y = \sin \theta$ where θ is uniformly distributed over (0, 2 π). Prove that —
 - (i) X and Y are uncorrelated.
 - (ii) X and Y are not independant.
- 6. (a) Explain in brief -
 - (i) WSS process
 - (ii) Poisson process
 - (iii) Queueing system.
 - (b) A random process is given by

 $X(t) = Sin (\omega t + y)$

where Y is uniformly distributed in $0, 2\pi$ verify whether X(t) is a wide-sense stationary process.

2

- 7. (a) Explain power spectral longity function. State its important properties and prove any one property.
 - (b) For a random process having
 - $R_{xx}(\tau) = a e^{bt}$ find the spectral density function, where a and b are constants.
 - (c) The power spaceral ensity of a WSS process is given by --

$$J_x w$$
 $= \frac{D}{2} (a - lwl); lwl \le a$

= 0; |w| > a

ind the auto correlation of the function.

12

8

8

6

6