P4/RT-Ex-07-336

Con, 5529-07.

[REVISED COURSE]

CD-5662

5

6

2

4

(3 Hours)

[Total Marks : 100

N.B. : Answer any five questions.

- 1. (a) State the three axioms of probability.
 - (b) Explain the concept of Joint and conditional probability with one example each. 5
 - (c) Let B_1, B_2, \dots, B_n be partitions of an event space B_i , $i = 1, 2, \dots, n$. For the event B that 10 has occured. Suppose now that an event A occurs. Find expression for p(B/A) in terms of B_i .
- 2. (a) Define and give one example each :-
 - (i) Probability distribution function of continuous and discrete random variable
 - (ii) Probability density function of continuous and discrete random variable.
 - (b) Let X be a continuous random variable with p.d.f. $f_1(x) = k \cdot x \cdot (1 x)$; $0 \le x \le 1$. Find 8 K and determine a number b such that $P(x \le b) = (x \ge b)$. Also obtain distribution function.
 - (c) (i) State important properties of characteristic function.
 - (ii) Find the probability density function f_x(x) whose characteristic function is given 4 below :-

 $\phi_{X}(w) = 1 - |w| ; \quad |w| \le 1$ = 0

3. (a) If the probability density function of x is

$$f_{x}(x) = e^{-x}$$
, $x > 0$

Find the probability density function of $y = x^3$.

- (b) If x is a continuous random variable with uniform probability density function in $(0, 2 \pi)$. Find the probability density function and distribution function of $y = \cos x$.
- (c) The joint phybability density function of two random variables is given by 10

 $(x, y) = 15 e^{-3x - 5y}$; x > 0, y > 0= 0 ; else

(i) Find the probability that -

1 < x < 2 and 0.2 < y < 0.3

(ii) Find the probability that -

x < 2 and y > 0.2

(iii) Find the marginal probability distributions of x and y.

P4/RT-Ex-07-337

Con. 5529-CD-5662-07.

If x, y are two independent random variables and if z = x/y, then prove that probability 4. (a) density function of z is given by -

$$f_{Z}(z) = \int_{-\infty}^{\infty} |y| \cdot f_{X}(yz) \cdot f_{y}(y) dy$$

(b) If x and y are two independent random variables with probability density function -

 $f_{x}(x) = e^{-x}$; x > 0 and $f_{y}(y) = 3 \cdot e^{-3y}; y > 0$

Find : fz(z) if z = x | y

- Find the moment generating function (M·G·F) of Poisso tribution and hence find (C) 6 mean and variance.
- Suppose x and y are two random variables. Define c variance and correlation coefficient 10 5. (a) of x and y. When do we say that x and y are
 - (i) Orthogonal
 - (ii) Independent and
 - (iii) Uncorrelated ? Are uncorrelated variables independent ?
 - 10 (b) If a random process is given by $x(t) = A \cos wt$

Where w is constant and A is random variable with uniform distribution over (0, 1). (t_1, t_2) and auto covariance $C_{xx}(t_1, t_2)$ of x(t). Find the mean $M_{v}(t)$, autocorrelation R_{v} ,

- State four classes of random processes giving one 6. (a) What is Random Process 6 example each.
 - (b) A Fandom Process is defined by, $x(t) = \sin (w_0 t + \theta)$ where θ is uniformly distributed 8 in (0, 2π) and w_o is constant. Verify where x(t) is a wide se

ide sense stationary process.

to a linear time invariant system is w.s.s then the output is also Prove that if 6 (C) WSS.

12

2

- (a) Write b on :-7.
 - godic Process
 - M / M / 1 Queue
 - Poisson Process. (iii)
 - (i) State important properties of power spectral density. (b)
 - (ii) Find the power spectral density of WSS random process whose autocorrelation 6 function is given by -

$$R(\tau) = \frac{a^2}{2} \cos b \tau$$