Con, 5529-07.
[REVISED COURSE]
CD-5662
(3 Hours)
[Total Marks : 100
N.B. : Answer any five questions.

1. (a) State the three axioms of probability.
(b) Explain the concept of Joint and conditional probability with ore mple each.
(c) Let $B_{1}, B_{2}, \ldots . . B_{n}$ be partitions of an event space $B_{i}, i=1,2 _n .>$ the event B that has occured. Suppose now that an event A occurs. Find ex A vor $p(B / A)$ in terms of B_{i}.
2. (a) Define and give one example each :-
(i) Probability distribution function of co inu sad discrete random variable
(ii) Probability density function of contir (ous end discrete random variable.
(b) Let X be a continuous random variable with a.f. $X x)=k \cdot x \cdot(1-x) ; 0 \leq x \leq 1$. Find K and determine a number b such that $P(x, b)=x \geq b)$. Aiso obtain distribution function.
(c) (i) State important properties of cb tenstic function.
(ii) Find the probability density firction $\mathrm{x}_{\mathrm{x}}(\mathrm{x})$ whose characteristic function is given below :-

$$
=|w| \geq 1
$$

3. (a) If the probability density on of x is

Find the probability renty function of $y=x^{3}$.
(b) If x is a cor standom variable with uniform probability density function in 6 $(0,2 \pi)$. Fin probability density function and distribution function of $y=\cos x$.
(c) The join ablity density function of two random variables is given by -

$$
\begin{array}{rll}
\lambda(x, y) & =15 e^{-3 x-5 y} & ; x>0, \quad y>0 \\
& =0 & ; \text { else }
\end{array}
$$

(i) Find the probability that -

$$
1<x<2 \text { and } 0.2<y<0.3
$$

(ii) Find the probability that -

$$
x<2 \text { and } y>0.2
$$

(iii) Find the marginal probability distributions of x and y.
4. (a) If x, y are two independent random variables and if $z=x / y$, then prove that probability density 'function of z is given by -

$$
f_{z}(z)=\int_{-\infty}^{\infty}|y| \cdot f_{x}(y z) \cdot f_{y}(y) d y
$$

(b) If x and y are two independent random variables with probabili caty fuction -

$$
\begin{aligned}
& f_{x}(x)=e^{-x} ; x>0 \text { and } \\
& f_{y}(y)=3 \cdot e^{-3 y} ; y>0
\end{aligned}
$$

Find: $f z(z)$ if $z=x \mid y$
(c) Find the moment generating function (M.G.F) of poiss dis ibution and hence find mean and variance.
5. (a) Suppose x and y are two random variables. D ne and correlation coefficient of x and y. When do we say that x and y
(i) Orthogonal
(ii) Independent and
(iii) Uncorrelated ? Are uncorrela ad Vables independent?
(b) If a random process is given by

$$
x(t)=A \cos w t
$$

Where w is constant and A is rariable with uniform distribution over $(0,1)$. Find the mean $M_{x}(t)$, autoco atio $A_{x x}\left(t_{1}, t_{2}\right)$ and auto covariance $C_{x x}\left(t_{1}, t_{2}\right)$ of $x(t)$.
6. (a) What is Random Proc ste four classes of random processes giving one example each.
(b) A Fandom Process befing by $x(t)=\sin \left(w_{0} t+\theta\right)$ where θ is uniformly distributed in $(0,2 \pi)$ and $w_{0} \sim$ stant. Verify where x wide sense stationary process.
(c) Prove that if ut to a linear time invariant system is w.s.s then the output is also wss.
7. (a) Write bert on :-
(i) Dodic Process
(ii) $\mathrm{M} / \mathrm{M} / 1$ Queue
(iii) Poisson Procris.
(b) (i) State important properties of power spectral density. 2
(ii) Find the power spectral density of WSS random process whose autocorrelation function is given by -

$$
R(\tau)=\frac{a^{2}}{2} \cos b \tau
$$

