B. Tech Degree V Semester Examination, November 2009

ME 503 ADVANCED MECHANICS OF SOLIDS

(2002 Scheme)

Time: 3 Hours	Maximum Mark	s: 100
I. a.	Derive strain-displacement relations and compatibility equations for a two dimensional condition.	(12)
b.	Explain about plain stress and plain strain with the help of examples. OR	(8)
II. a. b.	Derive differential equations of equilibrium for two dimensions. During the testing of an automobile using a 60° delta rosette, the following observations were made.	(8)
	(i) $\epsilon_a = 280 \times 10^{-6}$, $\epsilon_b = 160 \times 10^{-6}$, $\epsilon_c = -80 \times 10^{-6}$	
	Find the principal strains and maximum shear strain>	(12)
III. a. b.	Derive an expression for strain components in polar co-ordinates. A thick cylinder of internal diameter 100mm and external diameter 200mm is subjected to an internal pressure of 10N/mm ² . Find the variation of radial stress	(8)
	and circumferential stress across wall thickness. OR	(12)
IV. a.	Derive an expression for radial and tangential stresses developed in a disk of uniform thickness with inner radius 'a' and outer radius 'b' rotating with an angular velocity w. A steel tube of 300mm outer diameter is to be shrunk on another steel tube of 90mm internal diameter. After shrinking the diameter of the junction is 180mm. Before	(12)
	shrinking the difference in the diameter of the junction is 0.12mm. Determine (i) Shrinkage pressure at interface (ii) Temperature difference to make the assembly.	
	Take E = 200 GPa, $v = .3$, $\alpha = 10 \times 10^{-6}$ per 0 C.	(8)
V. a. b.	Derive Cauchy's stress formulae and hence explain about stress ellipsoid. Derive the cubical equation for determining principal stresses in a three dimensional	(8)
	problem.	(12)
VI.	OR The state of stress at a point is given as	
	/ [1 2 1]	
	$\tau ij = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} KPa$	
	Find the principal stresses and principal axes.	(20)
VII. a. b.	Explain about the concept of shear centre. Explain about principle of virtual work and castigliano's theorems. OR	(8) (12)

(Turn over)

VIII.

A cantilever of equal angle section $100 \times 100 \times 10$ mm weighing 120 N/m is 3 m long and is fixed at one end. The principal moments of inertia are 2822×10^3 mm⁴ and 718×10^3 mm⁴. Calculate the bending stresses at points A and B due to self weight of beam

(20)

IX. a. Explain about prandtt's membrane analogy.
b. Explain about shear flow.

OR

X. Derive an expression for stresses in a bar of elliptical cross section subjected to a torque T.

(20)

. . .