Con. 3453-10. (REVISED COURSE)

AN-4309
(3 Hours)
[Total Marks : 100
N.B. : (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of remaining six questions.
(3) Assume suitable data wherever required but justify them.
(4) All questions carry equal marks.
(5) Answer to each new question to be started on a fresh page.
(6) Figures to the right indicate full marks.

1. (a) What are the various real-time CPU scheduling algorithms. Explain each one 10
(b) What are requirements of mutual exclusion? Explain Pet foison algorithm for 10 mutual exclusion.
2. (a) What are two differences between user-level th ear and Kernel-level threads ? Under what circumstances is one type borer han the other?
(b) Consider the following page reference string:- 10 $1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,6$
How many page faults would occur for the following resent algorithms assuming one, two, three, four, five, six or seven frame es

- LRU Replacement
- FIFO Replacement
- Optimal Replacement.

3. (a) How does DMA increase system co eure ty? How does it complicate hardware 10 design?
(b) How do caches help improve perforyrance? Why do systems not use more or 10 larger caches if they are so sefur
4. (a) What are the various disk one fling algorithms. Explain each one in brief. 10
(b) Consider the following segment table:-

| Segment | Duse | Length |
| :---: | :---: | :---: | :---: |
| 0 | 219 | 600 |
| 1 | 2300 | 14 |
| 2 | 90 | 100 |
| 3 | 1327 | 580 |
| 4 | 1952 | 96 |

What are the physical addresses for the following logical addresses ?
(i) 0,430 ,
(ii) 1,10 ,
(iii) 2,500 ,
(iv) 3,400 , (v) $4,112$.
5. (a) What are the four conditions that create deadlock? Explain deadlock prevention and avoidance techniques.
(b) Given five memory partitions of $100 \mathrm{kB}, 500 \mathrm{kB}, 200 \mathrm{kB}, 300 \mathrm{kB}$, and 600 kB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of $212 \mathrm{kB}, 417 \mathrm{kB}, 112 \mathrm{kB}$, and 426 kB (in order) ? Which algorithm makes the most efficient use of memory?
6. (a) What are the various buffering techniques ? Explain each on in vatail.
(b) Explain file allocation methods in details.
7. Write a short notes on any four of the following :-
(a) Monolithic Vs. Micro Kernels
(d) NOS Vs.
(b) Comparison of any two RTOS
(e) Race fondi
(c) V_{x} Works $5 \cdot X$
(f) Inodes

些

