SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.E - EEE	
Title of the paper: Engineering Mathematics - III	
Semester: III	Max. Marks: 80
Sub.Code: 514301	Time: 3 Hours
Date: 04-05-2007	Session: AN

PART – A Answer ALL the Questions

$$(10 \text{ x } 2 = 20)$$

1. Find the Transform of $\left(\frac{\sin t}{t}\right)$ 2. Find $L^{-1}\left(\frac{s-1}{s^2+3s+2}\right)$

- 3. Find Root Mean square value of $f(x) = x x^2$ in -| < x < |.
- 4. Write complex form of fourier series for f(x).
- 5. Solve $\frac{\partial^2 u}{\partial x^2} = xy$

6. Find the particular integral of $(D^2 + 2DD' + D^{2})z = \sinh(x + y)$

7. Classify the partial differential equation.

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$$

8. Write the solutions of one dimensional heat equation obtained by the method of separation of variables.

If F {f(x)} = F(s) then prove that F{xⁿ f(x)} = (-i)ⁿ $\frac{d^n}{ds^n}$ F(s) 9.

1

10. Find fourier sine transform of $\frac{1}{x}$

PART – B
$$(5 \times 12 = 60)$$

Answer All the Questions

(a) Find the Laplace transform of half sine wave rectifier 11. function

$$f(t) = \begin{cases} a \sin \omega t & o \le t \le \frac{\pi}{\omega} \\ 0 & \frac{\pi}{\omega} \le t \le 2\frac{\pi}{\omega} \end{cases}$$

(b) Find
$$L^{-1}\left(\tan^{-1}\left(\frac{2}{s^2}\right)\right)$$

(or)
12. (a) Find $L^{-1}\left(\frac{s^2}{(s^2+9)(s^2+4)}\right)$ using convolution theorem.

(b) Solve
$$y^{\parallel} + 4y = \sin at given y(0) = 0 and y^{\parallel}(0) = 0$$
.

13. (a) Obtain Fourier series of the periodic function defined by

$$f(x) = \begin{cases} -\pi & \text{if } -\pi < x < o \\ x & \text{if } 0 < x < \pi \end{cases}$$

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + ... = \frac{\pi^2}{8}$

(b) Find half range cosine series for $f(x) = (x - 1)^2$. in 0 < x < 1.

Hence show that
$$\pi^2 = 6 \left\{ 1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \right\}$$
 (or)

(a) Expand $f(x) = \pi x - x^2$ in a half range sine series in the 14. interval (0, π).

(b) Compute the first three harmonics for the fourier series of f(x)given by the following table:

X	0	π	2π	π	4π	5π	2π
		$\overline{3}$	3		3	3	
f(x)	1	1.4	1.9	1.7	1.5	1.2	1

(a) Form pde by eliminating arbitraly functions. 15. From $z = f(x + ct) + \phi(x - ct)$.

(b) Solve x(y-z) p + y(z-x) q = z(x-y). (or) 16. (a) Solve $p^2 + q^2 = z^2 (x^2 + y^2)$

(b) Solve
$$(D^2 - 3DD^1 + 2D^1)^2$$
 $z = z \sin x \cos y$.

A taut string of length 2*l* is fastened at both ends. The mid point 17. of the string is taken to a height a and then released form the rest in that position. Find the displacement of the string.

18. A bar, 10cm long with insulated sides, has its ends A and B kept at 20° and 40°C respectively until steady-state conditions

prevail. The temperature at A is then suddenly raused to 50° C and at the same time B is lowered to 10° C. find the temperature distribution u(x,t) at any time.

- 19. (a) Show that the transform of $e^{-\frac{x^2}{2}}ise^{-\frac{s^2}{2}}$ by finding the fourier transform of $e^{-a^2x^2}$ a > 0.
 - (b) Find the fourier transform of f(x) = 1 |x| if |x| < | and hence find the value of $\int_{0}^{\infty} \frac{\sin^4 t}{t^4} dt$.
 - (or)
- 20. (a) Find the Fourier cosine transform of $e^{-a^2x^2}$ and hence evaluate the fourier sine transform of $xe^{-a^2x^2}$

(b) Evaluate
$$\int_{0}^{\infty} \frac{dx}{\left(a^{2}+x^{2}\right) \left(b^{2}+x^{2}\right)}$$