SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)
Course \& Branch: B.E - EEE
Title of the paper: Engineering Mathematics - III

Semester: III
Sub.Code: 514301
Date: 04-05-2007

Max. Marks: 80
Time: 3 Hours
Session: AN

> PART - A
$(10 \times 2=20)$

Answer ALL the Questions

1. Find the Transform of $\left(\frac{\sin t}{t}\right)$
2. Find $L^{-1}\left(\frac{s-1}{s^{2}+3 s+2}\right)$
3. Find Root Mean square value of $f(x)=x-x^{2}$ in $-\mathrm{I}<\mathrm{x}<\mathrm{l}$.
4. Write complex form of fourier series for $f(x)$.
5. Solve $\frac{\partial^{2} u}{\partial x^{2}}=x y$
6. Find the particular integral of $\left(D^{2}+2 D D^{\prime}+D^{1^{2}}\right) z=\sinh (x+y)$
7. Classify the partial differential equation.

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=\left(\frac{\partial u}{\partial x}\right)^{2}+\left(\frac{\partial u}{\partial y}\right)^{2}
$$

8. Write the solutions of one dimensional heat equation obtained by the method of separation of variables.
9. If $\mathrm{F}\{\mathrm{f}(x)\}=\mathrm{F}(\mathrm{s})$ then prove that $\mathrm{F}\left\{x^{\mathrm{n}} \mathrm{f}(x)\right\}=(-\mathrm{i})^{\mathrm{n}} \frac{d^{n}}{d s^{n}} \mathrm{~F}(\mathrm{~s})$
10. Find fourier sine transform of $\frac{1}{x}$

PART - B

$(5 \times 12=60)$
Answer All the Questions
11. (a) Find the Laplace transform of half sine wave rectifier function

$$
f(t)=\left\{\begin{array}{cc}
a \sin \omega t & o \leq t \leq \frac{\pi}{\omega} \\
0 & \frac{\pi}{\omega} \leq t \leq 2 \frac{\pi}{\omega}
\end{array}\right.
$$

(b) Find $L^{-1}\left(\tan ^{-1}\left(\frac{2}{s^{2}}\right)\right)$
(or)
12. (a) Find $L^{-1}\left(\frac{s^{2}}{\left(s^{2}+9\right)\left(s^{2}+4\right)}\right)$ using convolution theorem.
(b) Solve $y^{\prime \prime}+4 y=\sin$ at given $y(0)=0$ and $y^{\prime}(0)=0$.
13. (a) Obtain Fourier series of the periodic function defined by

$$
f(x)=\left\{\begin{array}{rrr}
-\pi & \text { if } & -\pi<x<0 \\
x & \text { if } & 0<x<\pi
\end{array}\right.
$$

Hence deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+. .=\frac{\pi^{2}}{8}$
(b) Find half range cosine series for $f(x)=(x-1)^{2}$. in $0<x<1$.

Hence show that $\pi^{2}=6\left\{1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+..\right\}$
(or)
14. (a) Expand $f(x)=\pi x-x^{2}$ in a half range sine series in the interval $(0, \pi)$.
(b) Compute the first three harmonics for the fourier series of $f(x)$ given by the following table:

x	0	$\frac{\pi}{3}$	$\frac{2 \pi}{3}$	π	$\frac{4 \pi}{3}$	$\frac{5 \pi}{3}$	2π
$\mathrm{f}(\mathrm{x})$	1	1.4	1.9	1.7	1.5	1.2	1

15. (a) Form pde by eliminating arbitraly functions.

From $z=f(x+c t)+\phi(x-c t)$.
(b) Solve $x(y-z) p+y(z-x) q=z(x-y)$.
(or)
16. (a) Solve $p^{2}+q^{2}=z^{2}\left(x^{2}+y^{2}\right)$
(b) Solve $\left(D^{2}-3 D D^{\prime}+2 D^{\left.\right|^{2}}\right) z=z \sin x \cos y$.
17. A taut string of length $2 l$ is fastened at both ends. The mid point of the string is taken to a height a and then released form the rest in that position. Find the displacement of the string. (or)
18. A bar, 10 cm long with insulated sides, has its ends A and B kept at 20° and $40^{\circ} \mathrm{C}$ respectively until steady-state conditions
prevail. The temperature at A is then suddenly raused to $50^{\circ} \mathrm{C}$ and at the same time B is lowered to $10^{\circ} \mathrm{C}$. find the temperature distribution $\mathrm{u}(\mathrm{x}, \mathrm{t})$ at any time.
19. (a) Show that the transform of $e^{-\frac{x^{2}}{2}} i s e^{-\frac{s^{2}}{2}}$ by finding the fourier transform of $e^{-a^{2} x^{2}} a>0$.
(b) Find the fourier transform of $f(x)=1-|x|$ if $|x|<1$ and hence find the value of $\int_{0}^{\infty} \frac{\sin ^{4} t}{t^{4}} d t$. (or)
20. (a) Find the Fourier cosine transform of $e^{-a^{2} x^{2}}$ and hence evaluate the fourier sine transform of $x e^{-a^{2} x^{2}}$
(b) Evaluate $\int_{0}^{\infty} \frac{d x}{\left(a^{2}+x^{2}\right)\left(b^{2}+x^{2}\right)}$

