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PART – A                (10 x 2 = 20) 

          Answer ALL the Questions 

 

1. Find the Transform of 
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3. Find Root Mean square value of f(x) = x – x2 in - | < x < |. 

 

4. Write complex form of fourier series for f(x). 

5. Solve 
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6. Find the particular integral of ( ) yxzDDDD +=++ sinh(2
2||2

) 

 

7. Classify the partial differential equation. 
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8. Write the solutions of one dimensional heat equation obtained by 

the method of separation of variables. 



9. If F {f(x)} = F(s) then prove that F{x
n f(x)} = (-i)n n

n

ds

d

 F(s) 

10. Find fourier sine transform of x

1
 

 

PART – B      (5 x 12 = 60) 

Answer All the Questions 

 

11. (a) Find the Laplace transform of half sine wave  rectifier 

function   
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 (b) Find 
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(or) 

12. (a) Find ( )( )
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 using convolution theorem. 

 

 (b) Solve y|| + 4y = sin at given y(0) = 0 and y| (0) = 0. 

 

13. (a) Obtain Fourier series of the periodic function defined by  
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Hence deduce that 8
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(b) Find half range cosine series for f(x) = (x – 1)2. in 0 < x < 1. 

Hence show that 
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(or) 

14. (a) Expand f(x) = πx – x
2 in a half  range  sine series in the 

interval (0, π). 

 

(b) Compute the first three harmonics for the fourier series of f(x) 

given by the following table: 

 

x 0 

3

π
 3

2π
 

π 

3

4π
 3

5π
 

2π 

f(x) 1 1.4 1.9 1.7 1.5 1.2 1 

 

15. (a) Form pde by eliminating arbitraly functions. 

  From z = f(x + ct) + φ (x – ct). 

 

 (b) Solve x(y – z) p + y(z – x) q = z(x – y). 

(or) 

16. (a) Solve p2
 + q

2
 = z

2
 (x

2
 + y

2
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(b) Solve (D
2
 – 3DD

|
 + 2D

|
2

) z = z sinx cosy. 

 

17. A taut string of length 2l is fastened at both ends. The mid point 

of the string is taken to a height a and then released form the rest 

in that position. Find the displacement of the string. 

(or) 

18. A bar, 10cm long with insulated sides, has its ends A and B kept 

at 20° and 40°C respectively until  steady-state conditions 



prevail. The temperature at A is then suddenly raused to 50°C 

and at the same time B is lowered to 10°C. find the temperature 

distribution u(x,t) at any time. 

 

19. (a) Show that the transform of 
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 a > 0. 

 

 (b) Find the fourier transform of f(x) = 1 - |x| if |x| < | and hence 

find the value of ∫
∞

0
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.
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(or) 

20. (a) Find the Fourier cosine transform of 
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and hence 

evaluate the fourier sine transform of 
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 (b) Evaluate ( ) ( )∫
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dx

 


